Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5649, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704664

RESUMEN

Observing proteins as they perform their tasks has largely remained elusive, which has left our understanding of protein function fundamentally incomplete. To enable such observations, we have recently proposed a technique that improves the time resolution of cryo-electron microscopy (cryo-EM) to microseconds. Here, we demonstrate that microsecond time-resolved cryo-EM enables observations of fast protein dynamics. We use our approach to elucidate the mechanics of the capsid of cowpea chlorotic mottle virus (CCMV), whose large-amplitude motions play a crucial role in the viral life cycle. We observe that a pH jump causes the extended configuration of the capsid to contract on the microsecond timescale. While this is a concerted process, the motions of the capsid proteins involve different timescales, leading to a curved reaction path. It is difficult to conceive how such a detailed picture of the dynamics could have been obtained with any other method, which highlights the potential of our technique. Crucially, our experiments pave the way for microsecond time-resolved cryo-EM to be applied to a broad range of protein dynamics that previously could not have been observed. This promises to fundamentally advance our understanding of protein function.


Asunto(s)
Bromovirus , Microscopía por Crioelectrón , Cápside , Proteínas de la Cápside , Movimiento (Física)
3.
Viruses ; 14(4)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458522

RESUMEN

Tick-borne encephalitis virus (TBEV) is a pathogenic, enveloped, positive-stranded RNA virus in the family Flaviviridae. Structural studies of flavivirus virions have primarily focused on mosquito-borne species, with only one cryo-electron microscopy (cryo-EM) structure of a tick-borne species published. Here, we present a 3.3 Å cryo-EM structure of the TBEV virion of the Kuutsalo-14 isolate, confirming the overall organisation of the virus. We observe conformational switching of the peripheral and transmembrane helices of M protein, which can explain the quasi-equivalent packing of the viral proteins and highlights their importance in stabilising membrane protein arrangement in the virion. The residues responsible for M protein interactions are highly conserved in TBEV but not in the structurally studied Hypr strain, nor in mosquito-borne flaviviruses. These interactions may compensate for the lower number of hydrogen bonds between E proteins in TBEV compared to the mosquito-borne flaviviruses. The structure reveals two lipids bound in the E protein which are important for virus assembly. The lipid pockets are comparable to those recently described in mosquito-borne Zika, Spondweni, Dengue, and Usutu viruses. Our results thus advance the understanding of tick-borne flavivirus architecture and virion-stabilising interactions.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Animales , Microscopía por Crioelectrón , Culicidae , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/ultraestructura , Proteínas Virales/metabolismo , Virión/metabolismo , Virión/ultraestructura , Virus Zika/metabolismo , Infección por el Virus Zika
4.
Diagnostics (Basel) ; 11(7)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34359341

RESUMEN

Infectious diseases are an existential health threat, potentiated by emerging and re-emerging viruses and increasing bacterial antibiotic resistance. Targeted treatment of infectious diseases requires precision diagnostics, especially in cases where broad-range therapeutics such as antibiotics fail. There is thus an increasing need for new approaches to develop sensitive and specific in vitro diagnostic (IVD) tests. Basic science and translational research are needed to identify key microbial molecules as diagnostic targets, to identify relevant host counterparts, and to use this knowledge in developing or improving IVD. In this regard, an overlooked feature is the capacity of pathogens to adhere specifically to host cells and tissues. The molecular entities relevant for pathogen-surface interaction are the so-called adhesins. Adhesins vary from protein compounds to (poly-)saccharides or lipid structures that interact with eukaryotic host cell matrix molecules and receptors. Such interactions co-define the specificity and sensitivity of a diagnostic test. Currently, adhesin-receptor binding is typically used in the pre-analytical phase of IVD tests, focusing on pathogen enrichment. Further exploration of adhesin-ligand interaction, supported by present high-throughput "omics" technologies, might stimulate a new generation of broadly applicable pathogen detection and characterization tools. This review describes recent results of novel structure-defining technologies allowing for detailed molecular analysis of adhesins, their receptors and complexes. Since the host ligands evolve slowly, the corresponding adhesin interaction is under selective pressure to maintain a constant receptor binding domain. IVD should exploit such conserved binding sites and, in particular, use the human ligand to enrich the pathogen. We provide an inventory of methods based on adhesion factors and pathogen attachment mechanisms, which can also be of relevance to currently emerging pathogens, including SARS-CoV-2, the causative agent of COVID-19.

5.
Med Microbiol Immunol ; 209(3): 309-323, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31865406

RESUMEN

Viruses have evolved many mechanisms to invade host cells and establish successful infections. The interaction between viral attachment proteins and host cell receptors is the first and decisive step in establishing such infections, initiating virus entry into the host cells. Therefore, the identification of host receptors is fundamental in understanding pathogenesis and tissue tropism. Furthermore, receptor identification can inform the development of antivirals, vaccines, and diagnostic technologies, which have a substantial impact on human health. Nevertheless, due to the complex nature of virus entry, the redundancy in receptor usage, and the limitations in current identification methods, many host receptors remain elusive. Recent advances in targeted gene perturbation, high-throughput screening, and mass spectrometry have facilitated the discovery of virus receptors in recent years. In this review, we compare the current methods used within the field to identify virus receptors, focussing on genomic- and interactome-based approaches.


Asunto(s)
Técnicas Genéticas , Ensayos Analíticos de Alto Rendimiento , Interacciones Microbiota-Huesped , Proteómica/métodos , Receptores Virales , Animales , Humanos , Análisis por Matrices de Proteínas , Proteínas Virales , Internalización del Virus
6.
Chembiochem ; 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29897155

RESUMEN

The kinetic resolution of amino acid esters (AAEs) is a useful synthetic strategy for the preparation of single-enantiomer amino acids. The development of an enzymatic dynamic kinetic resolution (DKR) process for AAEs, which would give a theoretical yield of 100 % of the enantiopure product, would require an amino acid ester racemase (AAER); however, no such enzyme has been described. We have identified low AAER activity of 15 U mg-1 in a homologue of a PLP-dependent α-amino ϵ-caprolactam racemase (ACLR) from Ochrobactrum anthropi. We have determined the structure of this enzyme, OaACLR, to a resolution of 1.87 Šand, by using structure-guided saturation mutagenesis, in combination with a colorimetric screen for AAER activity, we have identified a mutant, L293C, in which the promiscuous AAER activity of this enzyme towards l-phenylalanine methyl ester is improved 3.7-fold.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...