Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Extracell Vesicles ; 12(12): e12392, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38072803

RESUMEN

Exosomes are among the most puzzling vehicles of intercellular communication, but several crucial aspects of their biogenesis remain elusive, primarily due to the difficulty in purifying vesicles with similar sizes and densities. Here we report an effective methodology for labelling small extracellular vesicles (sEV) using Bodipy FL C16, a fluorescent palmitic acid analogue. In this study, we present compelling evidence that the fluorescent sEV population derived from Bodipy C16-labelled cells represents a discrete subpopulation of small exosomes following an intracellular pathway. Rapid cellular uptake and metabolism of Bodipy C16 resulted in the incorporation of fluorescent phospholipids into intracellular organelles specifically excluding the plasma membrane and ultimately becoming part of the exosomal membrane. Importantly, our fluorescence labelling method facilitated accurate quantification and characterization of exosomes, overcoming the limitations of nonspecific dye incorporation into heterogeneous vesicle populations. The characterization of Bodipy-labelled exosomes reveals their enrichment in tetraspanin markers, particularly CD63 and CD81, and in minor proportion CD9. Moreover, we employed nanoFACS sorting and electron microscopy to confirm the exosomal nature of Bodipy-labelled vesicles. This innovative metabolic labelling approach, based on the fate of a fatty acid, offers new avenues for investigating exosome biogenesis and functional properties in various physiological and pathological contexts.


Asunto(s)
Exosomas , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Ácido Palmítico/metabolismo , Exosomas/metabolismo , Transporte Biológico
2.
Methods Mol Biol ; 2504: 207-217, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35467289

RESUMEN

Extracellular vesicles (EVs) are membranous particles released by all cells in the external milieu. Depending on their origin, they are given different names: exosomes are nanovesicles that originate from the endosomal compartment, whereas microvesicles bud from plasma membrane. Both contain molecules that are crucial for the onset and spreading of different pathologies, from neurodegenerative diseases to cancer, and are considered promising disease markers. On the other hand, EVs are often used as therapeutic tools, and can be engineered to carry drugs and chemicals. This chapter describes a method to produce EVs, mainly exosomes, containing the green fluorescent protein (GFP) linked to an exosome anchoring protein (Nefmut). This enables counting and tracing of fluorescent EVs by different methods, including conventional flow cytometry.


Asunto(s)
Micropartículas Derivadas de Células , Exosomas , Vesículas Extracelulares , Micropartículas Derivadas de Células/metabolismo , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Citometría de Flujo
3.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878276

RESUMEN

Immunosuppression at tumor microenvironment (TME) is one of the major obstacles to be overcome for an effective therapeutic intervention against solid tumors. Tumor-associated macrophages (TAMs) comprise a sub-population that plays multiple pro-tumoral roles in tumor development including general immunosuppression, which can be identified in terms of high expression of mannose receptor (MR or CD206). Immunosuppressive TAMs, like other macrophage sub-populations, display functional plasticity that allows them to be re-programmed to inflammatory macrophages. In order to mitigate immunosuppression at the TME, several efforts are ongoing to effectively re-educate pro-tumoral TAMs. Extracellular vesicles (EVs), released by both normal and tumor cells types, are emerging as key mediators of the cell to cell communication and have been shown to have a role in the modulation of immune responses in the TME. Recent studies demonstrated the enrichment of high mannose glycans on the surface of small EVs (sEVs), a subtype of EVs of endosomal origin of 30-150 nm in diameter. This characteristic renders sEVs an ideal tool for the delivery of therapeutic molecules into MR/CD206-expressing TAMs. In this review, we report the most recent literature data highlighting the critical role of TAMs in tumor development, as well as the experimental evidences that has emerged from the biochemical characterization of sEV membranes. In addition, we propose an original way to target immunosuppressive TAMs at the TME by endogenously engineered sEVs for a new therapeutic approach against solid tumors.


Asunto(s)
Vesículas Extracelulares/inmunología , Tolerancia Inmunológica/inmunología , Lectinas Tipo C/metabolismo , Macrófagos/inmunología , Lectinas de Unión a Manosa/metabolismo , Neoplasias/inmunología , Receptores de Superficie Celular/metabolismo , Microambiente Tumoral/inmunología , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Receptor de Manosa , Neoplasias/metabolismo , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...