Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35214359

RESUMEN

In this work, the design, building, and testing of the most portable, easy-to-build, robust, handheld, and cost-effective Fourier Lightfield Microscope (FLMic) to date is reported. The FLMic is built by means of a surveillance camera lens and additional off-the-shelf optical elements, resulting in a cost-effective FLMic exhibiting all the regular sought features in lightfield microscopy, such as refocusing and gathering 3D information of samples by means of a single-shot approach. The proposed FLMic features reduced dimensions and light weight, which, combined with its low cost, turn the presented FLMic into a strong candidate for in-field application where 3D imaging capabilities are pursued. The use of cost-effective optical elements has a relatively low impact on the optical performance, regarding the figures dictated by the theory, while its price can be at least 100 times lower than that of a regular FLMic. The system operability is tested in both bright-field and fluorescent modes by imaging a resolution target, a honeybee wing, and a knot of dyed cotton fibers.


Asunto(s)
Imagenología Tridimensional , Microscopía , Análisis Costo-Beneficio , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Microscopía/instrumentación , Microscopía/métodos
2.
J Opt Soc Am A Opt Image Sci Vis ; 30(1): 140-8, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23456010

RESUMEN

This paper proposes a method for the generation of high-contrast localized sinusoidal fringes with spatially noncoherent illumination and relatively high light throughput. The method, somehow similar to the classical Lau effect, is based on the use of a Fresnel biprism. It has some advantages over previous methods for the noncoherent production of interference fringes. One is the flexibility of the method, which allows the control of the fringe period by means of a simple axial shift of the biprism. Second is the rapid axial fall-off in visibility around the high-contrast fringe planes. And third is the possibility of creating fringes with increasing or with constant period as the light beam propagates. Experimental verifications of the theoretical statements are also provided.

3.
Opt Express ; 14(21): 9617-26, 2006 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19529352

RESUMEN

We propose, analyze and numerically illustrate a photonic-based technique for waveform generation of electrical signals approaching the 50 GHz bandwidth with time apertures as large as a few nanoseconds, by low-frequency, up to 2 GHz, electro-optic phase modulation of time-stretched optical pulses. Synthesis of the electrical waveform relies on phase-to-amplitude conversion of the modulated signal by a group delay dispersion circuit designed to behave as a transversal filter with N taps. Although arbitrary waveform generation capabilities are limited, a wide variety of user-defined signals are numerically demonstrated by appropriately designing the low-frequency signal driving the electro-optical modulator. Frequency upshifting is controlled by the chirp of the stretched pulse which provides an additional degree of freedom. Finally, optical-to-electrical conversion allows for the user-defined electrical waveform. Simulations are given for square waveform generation demonstrating the high resolution and wide-band capabilities of the technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA