Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sci Transl Med ; 15(715): eade2966, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37756380

RESUMEN

Hepatic fibrosis is the primary determinant of mortality in patients with metabolic dysfunction-associated steatohepatitis (MASH). Transforming growth factor-ß (TGFß), a master profibrogenic cytokine, is a promising therapeutic target that has not yet been translated into an effective therapy in part because of liabilities associated with systemic TGFß antagonism. We have identified that soluble folate receptor γ (FOLR3), which is expressed in humans but not in rodents, is a secreted protein that is elevated in the livers of patients with MASH but not in those with metabolic dysfunction-associated steatotic liver disease, those with type II diabetes, or healthy individuals. Global proteomics showed that FOLR3 was the most highly significant MASH-specific protein and was positively correlated with increasing fibrosis stage, consistent with stimulation of activated hepatic stellate cells (HSCs), which are the key fibrogenic cells in the liver. Exposure of HSCs to exogenous FOLR3 led to elevated extracellular matrix (ECM) protein production, an effect synergistically potentiated by TGFß1. We found that FOLR3 interacts with the serine protease HTRA1, a known regulator of TGFBR, and activates TGFß signaling. Administration of human FOLR3 to mice induced severe bridging fibrosis and an ECM pattern resembling human MASH. Our study thus uncovers a role of FOLR3 in enhancing fibrosis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hígado Graso , Humanos , Animales , Ratones , Factor de Crecimiento Transformador beta , Células Estrelladas Hepáticas , Ácido Fólico
2.
Biomolecules ; 13(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37759735

RESUMEN

Extracellular histones, part of the protein group known as damage-associated molecular patterns (DAMPs), are released from damaged or dying cells and can instigate cellular toxicity. Within the context of chronic obstructive pulmonary disease (COPD), there is an observed abundance of extracellular histone H3.3, indicating potential pathogenic implications. Notably, histone H3.3 is often found hyperacetylated (AcH3.3) in the lungs of COPD patients. Despite these observations, the specific role of these acetylated histones in inducing pulmonary tissue damage in COPD remains unclear. To investigate AcH3.3's impact on lung tissue, we administered recombinant histones (rH2A, rH3.3, and rAcH3.3) or vehicle solution to mice via intratracheal instillation. After 48 h, we evaluated the lung toxicity damage and found that the rAcH3.3 treated animals exhibited more severe lung tissue damage compared to those treated with non-acetylated H3.3 and controls. The rAcH3.3 instillation resulted in significant histological changes, including alveolar wall rupture, epithelial cell damage, and immune cell infiltration. Micro-CT analysis confirmed macroscopic structural changes. The rAcH3.3 instillation also increased apoptotic activity (cleavage of caspase 3 and 9) and triggered acute systemic inflammatory marker activation (TNF-α, IL-6, MCP-3, or CXCL-1) in plasma, accompanied by leukocytosis and lymphocytosis. Confocal imaging analysis confirmed lymphocytic and monocytic/macrophage lung infiltration in response to H3.3 and AcH3.3 administration. Taken together, our findings implicate extracellular AcH3.3 in inducing cytotoxicity and acute inflammatory responses, suggesting its potential role in promoting COPD-related lung damage progression.

3.
Antioxidants (Basel) ; 12(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37507903

RESUMEN

With the rising prevalence of obesity, non-alcoholic fatty liver disease (NAFLD) now affects 20-25% of the global population. NAFLD, a progressive condition associated with oxidative stress, can result in cirrhosis and liver cancer in 10% and 3% of patients suffering NAFLD, respectively. Therapeutic options are currently limited, emphasizing the need for novel treatments. In this study, we examined the potential of activating the transcription factor NRF2, a crucial player in combating oxidative stress, as an innovative approach to treating NAFLD. Utilizing a CRISPR/Cas9-engineered human HEK293T cell line, we were able to monitor the expression of heme oxygenase-1 (HMOX1), an NRF2 target, using a Nanoluc luciferase tag. Our model was validated using a known NRF2 activator, after which we screened 1200 FDA-approved drugs, unearthing six compounds (Disulfiram, Thiostrepton, Auranofin, Thimerosal, Halofantrine, and Vorinostat) that enhanced NRF2 activity and antioxidant response. These compounds demonstrated protective effects against oxidative stress induced by hydrogen peroxide and lipid droplets accumulation in vitro with hepatoma HUH-7 cells. Our study underscores the utility of CRISPR/Cas9 tagging with Nanoluc luciferase in identifying potential NRF2 activators, paving the way for potential NAFLD therapeutics.

4.
Mater Today Bio ; 19: 100567, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36747581

RESUMEN

Engineered mesenchymal stem cells (MSCs) have been investigated extensively for gene delivery and, more recently, for targeted small molecule delivery. While preclinical studies demonstrate the potential of MSCs for targeted delivery, clinical studies suggest that tumor homing of native MSCs may be inefficient. We report here a surprising finding that loading MSCs with the anticancer drug paclitaxel (PTX) by nanoengineering results in significantly improved tumor homing compared to naïve MSCs. Loading PTX in MSCs results in increased levels of mitochondrial reactive oxygen species (ROS). In response to this oxidative stress, MSCs upregulate two important set of proteins. First were critical antioxidant proteins, most importantly nuclear factor erythroid 2-like 2 (Nrf2), the master regulator of antioxidant responses; upregulation of antioxidant proteins may explain how MSCs protect themselves from drug-induced oxidative stress. The second was CXCR4, a direct target of Nrf2 and a key mediator of tumor homing; upregulation of CXCR4 suggested a mechanism that may underlie the improved tumor homing of nanoengineered MSCs. In addition to demonstrating the potential mechanism of improved tumor targeting of nanoengineered MSCs, our studies reveal that MSCs utilize a novel mechanism of resistance against drug-induced oxidative stress and cell death, explaining how MSCs can deliver therapeutic concentrations of cytotoxic payload while maintaining their viability.

5.
Biomolecules ; 13(2)2023 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-36830618

RESUMEN

Tubulin is a protein that plays a critical role in maintaining cellular structure and facilitating cell division. Inhibiting tubulin polymerization has been shown to be an effective strategy for inhibiting the proliferation of cancer cells. In the past, identifying compounds that could inhibit tubulin polymerization has required the use of in vitro assays utilizing purified tubulin or immunofluorescence of fixed cells. This study presents a novel approach for identifying tubulin polymerization inhibitors using a CRISPR-edited cell line that expresses fluorescently tagged ß-tubulin and a nuclear protein, enabling the visualization of tubulin polymerization dynamics via high-content imaging analysis (HCI). The cells were treated with known tubulin polymerization inhibitors, colchicine, and vincristine, and the resulting phenotypic changes indicative of tubulin polymerization inhibition were confirmed using HCI. Furthermore, a library of 429 kinase inhibitors was screened, resulting in the identification of three compounds (ON-01910, HMN-214, and KX2-391) that inhibit tubulin polymerization. Live cell tracking analysis confirmed that compound treatment leads to rapid tubulin depolymerization. These findings suggest that CRISPR-edited cells with fluorescently tagged endogenous ß-tubulin can be utilized to screen large compound libraries containing diverse chemical families for the identification of novel tubulin polymerization inhibitors.


Asunto(s)
Antineoplásicos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Histonas/metabolismo , Polimerizacion , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Línea Celular , Antineoplásicos/farmacología , Proliferación Celular , Línea Celular Tumoral , Estructura Molecular
6.
J Clin Med ; 12(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36835911

RESUMEN

Breast cancer (BC) is the most common form of cancer in women worldwide [...].

7.
CRISPR J ; 4(6): 854-871, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34847745

RESUMEN

The lack of efficient tools to label multiple endogenous targets in cell lines without staining or fixation has limited our ability to track physiological and pathological changes in cells over time via live-cell studies. Here, we outline the FAST-HDR vector system to be used in combination with CRISPR-Cas9 to allow visual live-cell studies of up to three endogenous proteins within the same cell line. Our approach utilizes a novel set of advanced donor plasmids for homology-directed repair and a streamlined workflow optimized for microscopy-based cell screening to create genetically modified cell lines that do not require staining or fixation to accommodate microscopy-based studies. We validated this new methodology by developing two advanced cell lines with three fluorescent-labeled endogenous proteins that support high-content imaging without using antibodies or exogenous staining. We applied this technology to study seven severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/COVID-19) viral proteins to understand better their effects on autophagy, mitochondrial dynamics, and cell growth. Using these two cell lines, we were able to identify the protein ORF3a successfully as a potent inhibitor of autophagy, inducer of mitochondrial relocalization, and a growth inhibitor, which highlights the effectiveness of live-cell studies using this technology.


Asunto(s)
Autofagia , COVID-19 , Sistemas CRISPR-Cas , Marcación de Gen , Dinámicas Mitocondriales , SARS-CoV-2 , Proteínas Viroporinas , COVID-19/genética , COVID-19/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Microscopía , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo
8.
Pharmaceutics ; 13(12)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34959389

RESUMEN

Posiphen tartrate (Posiphen) is an orally available small molecule that targets a conserved regulatory element in the mRNAs of amyloid precursor protein (APP) and α-synuclein (αSYN) and inhibits their translation. APP and αSYN can cause neurodegeneration when their aggregates induce neurotoxicity. Therefore, Posiphen is a promising drug candidate for neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Posiphen's safety has been demonstrated in three independent phase I clinical trials. Moreover, in a proof of concept study, Posiphen lowered neurotoxic proteins and inflammatory markers in cerebrospinal fluid of mild cognitive impaired patients. Herein we investigated whether Posiphen reduced the expression of other proteins, as assessed by stable isotope labeling with amino acids in cell culture (SILAC) followed by mass spectrometry (MS)-based proteomics. Neuroblastoma SH-SY5Y cells, an in vitro model of neuronal function, were used for the SILAC protein profiling response. Proteins whose expression was altered by Posiphen treatment were characterized for biological functions, pathways and networks analysis. The most significantly affected pathway was the Huntington's disease signaling pathway, which, along with huntingtin (HTT) protein, was down-regulated by Posiphen in the SH-SY5Y cells. The downregulation of HTT protein by Posiphen was confirmed by quantitative Western blotting and immunofluorescence. Unchanged mRNA levels of HTT and a comparable decay rate of HTT proteins after Posiphen treatment supported the coclusion that Posiphen reduced HTT via downregulation of the translation of HTT mRNA. Meanwhile, the downregulation of APP and αSYN proteins by Posiphen was also confirmed. The mRNAs encoding HTT, APP and αSYN contain an atypical iron response element (IRE) in their 5'-untranslated regions (5'-UTRs) that bind iron regulatory protein 1 (IRP1), and Posiphen specifically bound this complex. Conversely, Posiphen did not bind the IRP1/IRE complex of mRNAs with canonical IREs, and the translation of these mRNAs was not affected by Posiphen. Taken together, Posiphen shows high affinity binding to the IRE/IRP1 complex of mRNAs with an atypical IRE stem loop, inducing their translation suppression, including the mRNAs of neurotoxic proteins APP, αSYN and HTT.

9.
Cell ; 175(5): 1244-1258.e26, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30454645

RESUMEN

Cyclin-dependent kinase 9 (CDK9) promotes transcriptional elongation through RNAPII pause release. We now report that CDK9 is also essential for maintaining gene silencing at heterochromatic loci. Through a live cell drug screen with genetic confirmation, we discovered that CDK9 inhibition reactivates epigenetically silenced genes in cancer, leading to restored tumor suppressor gene expression, cell differentiation, and activation of endogenous retrovirus genes. CDK9 inhibition dephosphorylates the SWI/SNF protein BRG1, which contributes to gene reactivation. By optimization through gene expression, we developed a highly selective CDK9 inhibitor (MC180295, IC50 = 5 nM) that has broad anti-cancer activity in vitro and is effective in in vivo cancer models. Additionally, CDK9 inhibition sensitizes to the immune checkpoint inhibitor α-PD-1 in vivo, making it an excellent target for epigenetic therapy of cancer.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Animales , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Metilación de ADN , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Cell Cycle ; 15(17): 2288-98, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27245560

RESUMEN

HIV-1 infected macrophages play a significant role in the neuropathogenesis of AIDS. HIV-1 viral protein R (Vpr) not only facilitates HIV-1 infection but also contribute to long-lived persistence in macrophages. Our previous studies using SILAC-based proteomic analysis showed that the expression of critical metabolic enzymes in the glycolytic pathway and tricarboxylic acid (TCA) cycle were altered in response to Vpr expression in macrophages. We hypothesized that Vpr-induced modulation of glycolysis and TCA cycle regulates glutamate metabolism and release in HIV-1 infected macrophages. We assessed the amount of specific metabolites induced by Vpr and HIV-1 in macrophages at the intracellular and extracellular level in a time-dependent manner utilizing multiple reaction monitoring (MRM) targeted metabolomics. In addition, stable isotope-labeled glucose and an MRM targeted metabolomics assay were used to evaluate the de novo synthesis and release of glutamate in Vpr overexpressing macrophages and HIV-1 infected macrophages, throughout the metabolic flux of glycolytic pathway and TCA cycle activation. The metabolic flux studies demonstrated an increase in glucose uptake, glutamate release and accumulation of α-ketoglutarate (α-KG) and glutamine in the extracellular milieu in Vpr expressing and HIV-1 infected macrophages. Interestingly, glutamate pools and other intracellular intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), citrate, malate, α-KG, and glutamine) showed a decreased trend except for fumarate, in contrast to the glutamine accumulation observed in the extracellular space in Vpr overexpressing macrophages. Our studies demonstrate that dysregulation of mitochondrial glutamate metabolism induced by Vpr in HIV-1 infected macrophages commonly seen, may contribute to neurodegeneration via excitotoxic mechanisms in the context of NeuroAIDS.


Asunto(s)
Ácido Glutámico/metabolismo , Infecciones por VIH/metabolismo , VIH-1/fisiología , Macrófagos/metabolismo , Macrófagos/virología , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Glucosa/farmacología , Glucólisis/efectos de los fármacos , Humanos , Ácidos Cetoglutáricos/metabolismo , Macrófagos/efectos de los fármacos , Metaboloma/efectos de los fármacos , Metabolómica , Monocitos/metabolismo , Células U937
11.
Sci Transl Med ; 7(304): 304re7, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26355033

RESUMEN

Obesity-linked insulin resistance greatly increases the risk for type 2 diabetes, hypertension, dyslipidemia, and non-alcoholic fatty liver disease, together known as the metabolic or insulin resistance syndrome. How obesity promotes insulin resistance remains incompletely understood. Plasma concentrations of free fatty acids and proinflammatory cytokines, endoplasmic reticulum ( ER) stress, and oxidative stress are all elevated in obesity and have been shown to induce insulin resistance. However, they may be late events that only develop after chronic excessive nutrient intake. The nature of the initial event that produces insulin resistance at the beginning of excess caloric intake and weight gain remains unknown. We show that feeding healthy men with ~6000 kcal/day of the common U.S. diet [~50% carbohydrate (CHO), ~ 35% fat, and ~15% protein] for 1 week produced a rapid weight gain of 3.5 kg and the rapid onset (after 2 to 3 days) of systemic and adipose tissue insulin resistance and oxidative stress but no inflammatory or ER stress. In adipose tissue, the oxidative stress resulted in extensive oxidation and carbonylation of numerous proteins, including carbonylation of GLUT4 near the glucose transport channel, which likely resulted in loss of GLUT4 activity. These results suggest that the initial event caused by overnutrition may be oxidative stress, which produces insulin resistance, at least in part, via carbonylation and oxidation-induced inactivation of GLUT4.


Asunto(s)
Ingestión de Energía , Transportador de Glucosa de Tipo 4/metabolismo , Salud , Resistencia a la Insulina , Estrés Oxidativo , Carbonilación Proteica , Tejido Adiposo/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Modelos Moleculares , Hipernutrición/metabolismo , Hipernutrición/patología , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno/metabolismo
12.
PLoS One ; 10(3): e0118906, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25756965

RESUMEN

Epithelial-to-Mesenchymal Transition (EMT) is relevant in malignant growth and frequently correlates with worsening disease progression due to its implications in metastases and resistance to therapeutic interventions. Although EMT is known to occur in several types of solid tumors, the information concerning tumors arising from the epithelia of the bile tract is still limited. In order to approach the problem of EMT in cholangiocarcinoma, we decided to investigate the changes in protein expression occurring in two cell lines under conditions leading to growth as adherent monolayers or to formation of multicellular tumor spheroids (MCTS), which are considered culture models that better mimic the growth characteristics of in-vivo solid tumors. In our system, changes in phenotypes occur with only a decrease in transmembrane E-cadherin and vimentin expression, minor changes in the transglutaminase protein/activity but with significant differences in the proteome profiles, with declining and increasing expression in 6 and in 16 proteins identified by mass spectrometry. The arising protein patterns were analyzed based on canonical pathways and network analysis. These results suggest that significant metabolic rearrangements occur during the conversion of cholangiocarcinomas cells to the MCTS phenotype, which most likely affect the carbohydrate metabolism, protein folding, cytoskeletal activity, and tissue sensitivity to oxygen.


Asunto(s)
Neoplasias de los Conductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteoma/metabolismo , Esferoides Celulares/metabolismo , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Colangiocarcinoma/patología , Transición Epitelial-Mesenquimal , Humanos , Proteoma/genética
14.
J Biol Chem ; 289(11): 7615-29, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24492610

RESUMEN

Cardiac TRPM2 channels were activated by intracellular adenosine diphosphate-ribose and blocked by flufenamic acid. In adult cardiac myocytes the ratio of GCa to GNa of TRPM2 channels was 0.56 ± 0.02. To explore the cellular mechanisms by which TRPM2 channels protect against cardiac ischemia/reperfusion (I/R) injury, we analyzed proteomes from WT and TRPM2 KO hearts subjected to I/R. The canonical pathways that exhibited the largest difference between WT-I/R and KO-I/R hearts were mitochondrial dysfunction and the tricarboxylic acid cycle. Complexes I, III, and IV were down-regulated, whereas complexes II and V were up-regulated in KO-I/R compared with WT-I/R hearts. Western blots confirmed reduced expression of the Complex I subunit and other mitochondria-associated proteins in KO-I/R hearts. Bioenergetic analyses revealed that KO myocytes had a lower mitochondrial membrane potential, mitochondrial Ca(2+) uptake, ATP levels, and O2 consumption but higher mitochondrial superoxide levels. Additionally, mitochondrial Ca(2+) uniporter (MCU) currents were lower in KO myocytes, indicating reduced mitochondrial Ca(2+) uptake was likely due to both lower ψm and MCU activity. Similar to isolated myocytes, O2 consumption and ATP levels were also reduced in KO hearts. Under a simulated I/R model, aberrant mitochondrial bioenergetics was exacerbated in KO myocytes. Reactive oxygen species levels were also significantly higher in KO-I/R compared with WT-I/R heart slices, consistent with mitochondrial dysfunction in KO-I/R hearts. We conclude that TRPM2 channels protect the heart from I/R injury by ameliorating mitochondrial dysfunction and reducing reactive oxygen species levels.


Asunto(s)
Mitocondrias/metabolismo , Daño por Reperfusión/patología , Canales Catiónicos TRPM/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Transporte de Electrón , Electrofisiología , Células HEK293 , Corazón/fisiopatología , Ventrículos Cardíacos/metabolismo , Humanos , Masculino , Potenciales de la Membrana , Ratones , Ratones Noqueados , Células Musculares/citología , Isquemia Miocárdica/patología , Oxígeno/química , Consumo de Oxígeno , Proteómica , Especies Reactivas de Oxígeno/metabolismo
15.
COPD ; 11(2): 177-89, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24111704

RESUMEN

The search for COPD biomarkers has largely employed a targeted approach that focuses on plasma proteins involved in the systemic inflammatory response and in lung injury and repair. This proof of concept study was designed to test the idea that an open, unbiased, in-depth proteomics approach could identify novel, low abundance plasma proteins i.e., ng/mL concentration, which could serve as potential biomarkers. Differentially expressed proteins were identified in a discovery group with severe COPD (FEV1 <45% predicted; n = 10). Subjects with normal lung function matched for age, sex, ethnicity and smoking history served as controls (n = 10). Pooled plasma from each group was exhaustively immunodepleted of abundant proteins, d separated by 1-D gel electrophoresis and extensively fractionated prior to LC-tandem mass spectroscopy (GeLC-MS). Thirty one differentially expressed proteins were identified in the discovery group including markers of lung defense against oxidant stress, alveolar macrophage activation, and lung tissue injury and repair. Four of the 31 proteins (i.e., GRP78, soluble CD163, IL1AP and MSPT9) were measured in a separate verification group of 80 subjects with varying COPD severity by immunoassay. All 4 were significantly altered in COPD and 2 (GRP78 and soluble CD163) correlated with both FEV1 and the extent of emphysema. In-depth, plasma proteomic analysis identified a group of novel, differentially expressed, low abundance proteins that reflect known pathogenic mechanisms and the severity of lung remodeling in COPD. These proteins may also prove useful as COPD biomarkers.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Proteínas Sanguíneas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/patología , Anciano , Biomarcadores/sangre , Estudios de Casos y Controles , Chaperón BiP del Retículo Endoplásmico , Volumen Espiratorio Forzado , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Proteómica , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad , Población Blanca
16.
Diabetes ; 63(3): 912-22, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24130338

RESUMEN

Endoplasmic reticulum (ER) stress is increased in obesity and is postulated to be a major contributor to many obesity-related pathologies. Little is known about what causes ER stress in obese people. Here, we show that insulin upregulated the unfolded protein response (UPR), an adaptive reaction to ER stress, in vitro in 3T3-L1 adipocytes and in vivo, in subcutaneous (sc) adipose tissue of nondiabetic subjects, where it increased the UPR dose dependently over the entire physiologic insulin range (from ∼ 35 to ∼ 1,450 pmol/L). The insulin-induced UPR was not due to increased glucose uptake/metabolism and oxidative stress. It was associated, however, with increased protein synthesis, with accumulation of ubiquitination associated proteins, and with multiple posttranslational protein modifications (acetylations, methylations, nitrosylations, succinylation, and ubiquitinations), some of which are potential causes for ER stress. These results reveal a new physiologic role of insulin and provide a putative mechanism for the development of ER stress in obesity. They may also have clinical and therapeutic implications, e.g., in diabetic patients treated with high doses of insulin.


Asunto(s)
Tejido Adiposo/metabolismo , Insulina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Células 3T3-L1 , Adulto , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Glucosa/metabolismo , Humanos , Insulina/sangre , Masculino , Ratones , Persona de Mediana Edad , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Ubiquitinación , Respuesta de Proteína Desplegada/genética
17.
J AIDS Clin Res ; 5(6): 1000312, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25893137

RESUMEN

OBJECTIVES: Spermidine/spermine-N1-acetytransferase (SSAT) is the key enzyme in the catabolism of polyamines that are involved in regulating NMDA functioning. Over expression of SSAT leads to abnormal metabolic cycling and may disrupt NMDA receptor signaling. In fact, the HIV protein Tat induces neurotoxicity involving polyamine/NMDA receptor interactions. Thus, we investigated abnormal polyamine cycling in HIV+ participants with varying degrees of HIV-associated neurocognitive disorders. METHODS: Acetyl-polyamine (SSAT products) levels were assessed by HPLC in CSF from 99 HIV-infected participants (no cognitive impairment (NCI, n=25), asymptomatic neurocognitive impairment (ANI, n=25), mild cognitive and motor disorders (MCMD, n=24), and HIV-associated dementia (HAD, n=25)). Polyamine levels in brain tissues from a subset of participants (uninfected (n=3), NCI (n=3), and MNCD (n=3)) were also assessed. Human primary astrocytes expressing HIV Tat were assessed for levels of the SSAT activity. RESULTS: Activation of the polyamine catabolic enzyme, SSAT increases polyamine flux in brain and CSF of HIV infected individuals with HIV-associated neurocognitive disorders. CSF levels of acetylated polyamine increase with the degree of HAND severity as indicated by significantly increased acetylpolyamine levels in HAD participants compared to NCI and ANI (p<0.0001) and between MCMD and NCI and ANI (p<0.0001). In vitro studies suggest that the HIV protein Tat may be responsible in part for astrocyte-derived acetyl polyamine release. INTERPRETATION: Our data suggest that polyamine metabolism may play a pivotal role in the neurodegeneration process among HAND patients. Changes in polyamine flux may serve as a potential predictive diagnostic biomarker for different severities of HAND.

18.
Am J Respir Crit Care Med ; 188(6): 673-83, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23924319

RESUMEN

RATIONALE: Shifts in the gene expression of nuclear protein in chronic obstructive pulmonary disease (COPD), a progressive disease that is characterized by extensive lung inflammation and apoptosis, are common; however, the extent of the elevation of the core histones, which are the major components of nuclear proteins and their consequences in COPD, has not been characterized, which is important because extracellular histones are cytotoxic to endothelial and airway epithelial cells. OBJECTIVES: To investigate the role of extracellular histones in COPD disease progression. METHODS: We analyzed the nuclear lung proteomes of ex-smokers with and without the disease. Further studies on the consequences of H3.3 were also performed. MEASUREMENTS AND MAIN RESULTS: A striking finding was a COPD-specific eightfold increase of hyperacetylated histone H3.3. The hyperacetylation renders H3.3 resistant to proteasomal degradation despite ubiquitination; when combined with the reduction in proteasome activity that is known for COPD, this resistance helps account for the increased levels of H3.3. Using anti-H3 antibodies, we found H3.3 in the airway lumen, alveolar fluid, and plasma of COPD samples. H3.3 was cytotoxic to lung structural cells via a mechanism that involves the perturbation of Ca(2+) homeostasis and mitochondrial toxicity. We used the primary human airway epithelial cells and found that the antibodies to either the C or N terminus of H3 could partially reverse H3.3 toxicity. CONCLUSIONS: Our data indicate that there is an uncontrolled positive feedback loop in which the damaged cells release acetylated H3.3, which causes more damage, adds H3.3 release, and contributes toward the disease progression.


Asunto(s)
Apoptosis , Progresión de la Enfermedad , Histonas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Acetilación , Humanos , Técnicas In Vitro , Pulmón/metabolismo , Pulmón/fisiopatología
19.
PLoS One ; 8(7): e68376, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874603

RESUMEN

Human immunodeficiency virus type 1 encoded viral protein Vpr is essential for infection of macrophages by HIV-1. Furthermore, these macrophages are resistant to cell death and are viral reservoir. However, the impact of Vpr on the macrophage proteome is yet to be comprehended. The goal of the present study was to use a stable-isotope labeling by amino acids in cell culture (SILAC) coupled with mass spectrometry-based proteomics approach to characterize the Vpr response in macrophages. Cultured human monocytic cells, U937, were differentiated into macrophages and transduced with adenovirus construct harboring the Vpr gene. More than 600 proteins were quantified in SILAC coupled with LC-MS/MS approach, among which 136 were significantly altered upon Vpr overexpression in macrophages. Quantified proteins were selected and clustered by biological functions, pathway and network analysis using Ingenuity computational pathway analysis. The proteomic data illustrating increase in abundance of enzymes in the glycolytic pathway (pentose phosphate and pyruvate metabolism) was further validated by western blot analysis. In addition, the proteomic data demonstrate down regulation of some key mitochondrial enzymes such as glutamate dehydrogenase 2 (GLUD2), adenylate kinase 2 (AK2) and transketolase (TKT). Based on these observations we postulate that HIV-1 hijacks the macrophage glucose metabolism pathway via the Vpr-hypoxia inducible factor 1 alpha (HIF-1 alpha) axis to induce expression of hexokinase (HK), glucose-6-phosphate dehyrogenase (G6PD) and pyruvate kinase muscle type 2 (PKM2) that facilitates viral replication and biogenesis, and long-term survival of macrophages. Furthermore, dysregulation of mitochondrial glutamate metabolism in macrophages can contribute to neurodegeneration via neuroexcitotoxic mechanisms in the context of NeuroAIDS.


Asunto(s)
Marcaje Isotópico/métodos , Macrófagos/metabolismo , Redes y Vías Metabólicas , Proteómica/métodos , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , Western Blotting , Biología Computacional , Glucólisis , Humanos , Modelos Biológicos , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Reproducibilidad de los Resultados , Transducción Genética , Células U937
20.
Biochem Biophys Res Commun ; 437(1): 134-9, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23806685

RESUMEN

Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is a transcription factor that is essential for the regulation of an effective antioxidant and detoxifying response. The regulation of its activity can occur at transcription, translation and post-translational levels. Evidence suggests that under environmental stress conditions, new synthesis of Nrf2 is required - a process that is regulated by translational control and is not fully understood. Here we described the identification of a novel molecular process that under basal conditions strongly represses the translation of Nrf2 within the open reading frame (ORF). This mechanism is dependent on the mRNA sequence within the 3' portion of the ORF of Nrf2 but not in the encoded amino acid sequence. The Nrf2 translational repression can be reversed with the use of synonymous codon substitutions. This discovery suggests an additional layer of control to explain the reason for the low Nrf2 concentration under quiescent state.


Asunto(s)
Regulación de la Expresión Génica , Factor 2 Relacionado con NF-E2/genética , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas/genética , Aminoácidos/metabolismo , Secuencia de Bases , Células HEK293 , Humanos , Mutación/genética , Factor 2 Relacionado con NF-E2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...