Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bone ; 49(6): 1178-85, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21890008

RESUMEN

Humans with inherited sclerostin deficiency have high bone mass. Targeted deletion of the sclerostin gene in mice (SOST-KO) causes increases in bone formation, bone mass and bone strength. Inhibition of sclerostin by a monoclonal antibody increases bone formation and enhances fracture healing in rodent and primate models. In this study, we describe the temporal progression of femoral fracture healing in SOST-KO mice compared with wild type (WT) control mice to further characterize the role of sclerostin in fracture healing. Sixty-seven male 9-10 week-old SOST-KO (N=37) and WT (N=30) mice underwent a closed femoral fracture. Weekly radiography was used to monitor the progress of healing. Histologic sections were used to characterize callus composition, evaluate callus bridging, and quantify lamellar bone formation on days 14 and 28. Densitometry and biomechanical testing were utilized to characterize bone mass and strength at the fractured and contralateral femurs on day 45. A significant improvement in time to radiographic healing (no discernible fracture line) was observed in SOST-KO mice, which corresponded to an increase in histologic bony bridging at 14 days (38% versus 0% in WT). Both genotypes appeared to be nearly fully bridged at 28 days post-fracture. The increased bridging at 14 days was associated with 97% greater bone area and 40% lower cartilage area in the callus of SOST-KO mice as compared to WT mice. Bone formation-related endpoints were higher in SOST-KO mice at both 14 and 28 days. At 45 days post-fracture, peak load and bone mass were significantly greater in the fractured femurs of SOST-KO mice as compared to WT mice. In conclusion, fractures in mice lacking sclerostin showed accelerated bridging, greater callus maturation, and increased bone formation and strength in the callus.


Asunto(s)
Callo Óseo/patología , Curación de Fractura , Glicoproteínas/deficiencia , Glicoproteínas/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Densidad Ósea/fisiología , Callo Óseo/diagnóstico por imagen , Callo Óseo/fisiopatología , Fracturas del Fémur/diagnóstico por imagen , Fracturas del Fémur/genética , Fracturas del Fémur/patología , Fracturas del Fémur/fisiopatología , Fémur/diagnóstico por imagen , Fémur/patología , Fémur/fisiopatología , Péptidos y Proteínas de Señalización Intercelular , Masculino , Ratones , Ratones Noqueados , Tamaño de los Órganos , Radiografía , Coloración y Etiquetado
2.
Endocrinology ; 152(9): 3312-22, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21733832

RESUMEN

Clinical studies have revealed a blunting of the bone anabolic effects of parathyroid hormone treatment in osteoporotic patients in the setting of pre- or cotreatment with the antiresorptive agent alendronate (ALN). Sclerostin monoclonal antibody (Scl-Ab) is currently under clinical investigation as a new potential anabolic therapy for postmenopausal osteoporosis. The purpose of these experiments was to examine the influence of pretreatment or cotreatment with ALN on the bone anabolic actions of Scl-Ab in ovariectomized (OVX) rats. Ten-month-old osteopenic OVX rats were treated with ALN or vehicle for 6 wk, before the start of Scl-Ab treatment. ALN-pretreated OVX rats were switched to Scl-Ab alone or to a combination of ALN and Scl-Ab for another 6 wk. Vehicle-pretreated OVX rats were switched to Scl-Ab or continued on vehicle to serve as controls. Scl-Ab treatment increased areal bone mineral density, volumetric bone mineral density, trabecular and cortical bone mass, and bone strength similarly in OVX rats pretreated with ALN or vehicle. Serum osteocalcin and bone formation rate on trabecular, endocortical, and periosteal surfaces responded similarly to Scl-Ab in ALN or vehicle-pretreated OVX rats. Furthermore, cotreatment with ALN did not have significant effects on the increased bone formation, bone mass, and bone strength induced by Scl-Ab in the OVX rats that were pretreated with ALN. These results indicate that the increases in bone formation, bone mass, and bone strength with Scl-Ab treatment were not affected by pre- or cotreatment with ALN in OVX rats with established osteopenia.


Asunto(s)
Alendronato/farmacología , Anticuerpos Monoclonales/farmacología , Conservadores de la Densidad Ósea/farmacología , Densidad Ósea/efectos de los fármacos , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Proteínas Morfogenéticas Óseas/inmunología , Marcadores Genéticos/inmunología , Osteogénesis/efectos de los fármacos , Fosfatasa Ácida/sangre , Alendronato/uso terapéutico , Animales , Anticuerpos Monoclonales/uso terapéutico , Densidad Ósea/inmunología , Conservadores de la Densidad Ósea/uso terapéutico , Enfermedades Óseas Metabólicas/sangre , Enfermedades Óseas Metabólicas/inmunología , Huesos/efectos de los fármacos , Huesos/inmunología , Modelos Animales de Enfermedad , Femenino , Isoenzimas/sangre , Osteocalcina/sangre , Osteogénesis/inmunología , Ovariectomía , Ratas , Ratas Sprague-Dawley , Fosfatasa Ácida Tartratorresistente
3.
J Bone Miner Res ; 26(11): 2610-21, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21773994

RESUMEN

The physiological role of Dickkopf-1 (Dkk1) during postnatal bone growth in rodents and in adult rodents was examined utilizing an antibody to Dkk1 (Dkk1-Ab) that blocked Dkk1 binding to both low density lipoprotein receptor-related protein 6 (LRP6) and Kremen2, thereby preventing the Wnt inhibitory activity of Dkk1. Treatment of growing mice and rats with Dkk1-Ab resulted in a significant increase in bone mineral density because of increased bone formation. In contrast, treatment of adult ovariectomized rats did not appreciably impact bone, an effect that was associated with decreased Dkk1 expression in the serum and bone of older rats. Finally, we showed that Dkk1 plays a prominent role in adult bone by mediating fracture healing in adult rodents. These data suggest that, whereas Dkk1 significantly regulates bone formation in younger animals, its role in older animals is limited to pathologies that lead to the induction of Dkk1 expression in bone and/or serum, such as traumatic injury.


Asunto(s)
Envejecimiento/metabolismo , Huesos/lesiones , Huesos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Osteogénesis/fisiología , Envejecimiento/efectos de los fármacos , Animales , Anticuerpos Bloqueadores/administración & dosificación , Anticuerpos Bloqueadores/farmacología , Densidad Ósea/efectos de los fármacos , Enfermedades Óseas Metabólicas/sangre , Enfermedades Óseas Metabólicas/fisiopatología , Huesos/diagnóstico por imagen , Huesos/patología , Línea Celular , Estrógenos/deficiencia , Femenino , Fémur/diagnóstico por imagen , Fémur/efectos de los fármacos , Fémur/patología , Curación de Fractura/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Vértebras Lumbares/efectos de los fármacos , Vértebras Lumbares/patología , Masculino , Ratones , Osteogénesis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Microtomografía por Rayos X
4.
J Bone Miner Res ; 26(5): 1012-21, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21542004

RESUMEN

Therapeutic enhancement of fracture healing would help to prevent the occurrence of orthopedic complications such as nonunion and revision surgery. Sclerostin is a negative regulator of bone formation, and treatment with a sclerostin monoclonal antibody (Scl-Ab) results in increased bone formation and bone mass in animal models. Our objective was to investigate the effects of systemic administration of Scl-Ab in two models of fracture healing. In both a closed femoral fracture model in rats and a fibular osteotomy model in cynomolgus monkeys, Scl-Ab significantly increased bone mass and bone strength at the site of fracture. After 10 weeks of healing in nonhuman primates, the fractures in the Scl-Ab group had less callus cartilage and smaller fracture gaps containing more bone and less fibrovascular tissue. These improvements at the fracture site corresponded with improvements in bone formation, bone mass, and bone strength at nonfractured cortical and trabecular sites in both studies. Thus the potent anabolic activity of Scl-Ab throughout the skeleton also was associated with an anabolic effect at the site of fracture. These results support the potential for systemic Scl-Ab administration to enhance fracture healing in patients.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/farmacología , Densidad Ósea/efectos de los fármacos , Fracturas del Fémur/fisiopatología , Curación de Fractura/efectos de los fármacos , Glicoproteínas/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Diáfisis/efectos de los fármacos , Diáfisis/patología , Diáfisis/fisiopatología , Modelos Animales de Enfermedad , Fémur/efectos de los fármacos , Fémur/patología , Fémur/fisiopatología , Peroné/efectos de los fármacos , Peroné/patología , Peroné/fisiopatología , Glicoproteínas/inmunología , Péptidos y Proteínas de Señalización Intercelular , Macaca fascicularis , Masculino , Tamaño de los Órganos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteotomía , Ratas , Ratas Sprague-Dawley
5.
J Bone Miner Res ; 25(12): 2647-56, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20641040

RESUMEN

The purpose of this study was to evaluate the effects of sclerostin inhibition by treatment with a sclerostin antibody (Scl-AbII) on bone formation, bone mass, and bone strength in an aged, gonad-intact male rat model. Sixteen-month-old male Sprague-Dawley rats were injected subcutaneously with vehicle or Scl-AbII at 5 or 25 mg/kg twice per week for 5 weeks (9-10/group). In vivo dual-energy X-ray absorptiometry (DXA) analysis showed that there was a marked increase in areal bone mineral density of the lumbar vertebrae (L(1) to L(5) ) and long bones (femur and tibia) in both the 5 and 25 mg/kg Scl-AbII-treated groups compared with baseline or vehicle controls at 3 and 5 weeks after treatment. Ex vivo micro-computed tomographic (µCT) analysis demonstrated improved trabecular and cortical architecture at the fifth lumbar vertebral body (L(5) ), femoral diaphysis (FD), and femoral neck (FN) in both Scl-AbII dose groups compared with vehicle controls. The increased cortical and trabecular bone mass was associated with a significantly higher maximal load of L(5) , FD, and FN in the high-dose group. Bone-formation parameters (ie, mineralizing surface, mineral apposition rate, and bone-formation rate) at the proximal tibial metaphysis and tibial shaft were markedly greater on trabecular, periosteal, and endocortical surfaces in both Scl-AbII dose groups compared with controls. These results indicate that sclerostin inhibition by treatment with a sclerostin antibody increased bone formation, bone mass, and bone strength in aged male rats and, furthermore, suggest that pharmacologic inhibition of sclerostin may represent a promising anabolic therapy for low bone mass in aged men.


Asunto(s)
Envejecimiento/metabolismo , Anticuerpos Monoclonales/inmunología , Densidad Ósea/fisiología , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Huesos/anatomía & histología , Huesos/metabolismo , Osteogénesis , Absorciometría de Fotón , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Huesos/citología , Huesos/diagnóstico por imagen , Colágeno Tipo I/metabolismo , Marcadores Genéticos , Masculino , Tamaño de los Órganos , Osteocalcina/sangre , Ratas , Ratas Sprague-Dawley , Serotonina/sangre , Tomografía Computarizada por Rayos X
6.
J Bone Miner Res ; 24(7): 1234-46, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19257823

RESUMEN

RANKL is an essential mediator of bone resorption, and its activity is inhibited by osteoprotegerin (OPG). Transgenic (Tg) rats were engineered to continuously overexpress OPG to study the effects of continuous long-term RANKL inhibition on bone volume, density, and strength. Lumbar vertebrae, femurs, and blood were obtained from 1-yr-old female OPG-Tg rats (n = 32) and from age-matched wildtype (WT) controls (n = 23). OPG-Tg rats had significantly greater serum OPG (up to 260-fold) and significantly lower serum TRACP5b and osteocalcin compared with WT controls. Vertebral histomorphometry showed significant reductions in osteoclasts and bone turnover parameters in OPG-Tg rats versus WT controls, and these reductions were associated with significantly greater peak load in vertebrae tested through compression. No apparent differences in bone material properties were observed in OPG-Tg rat vertebrae, based on their unchanged intrinsic strength parameters and their normal linear relationship between vertebral bone mass and strength. Femurs from OPG-Tg rats were of normal length but showed mild osteopetrotic changes, including reduced periosteal perimeter (-6%) and an associated reduction in bending strength. Serum OPG levels in WT rats showed no correlations with any measured parameter of bone turnover, mass, or strength, whereas the supraphysiological serum OPG levels in OPG-Tg rats correlated negatively with bone turnover parameters and positively with vertebral bone mass and strength parameters. In summary, low bone turnover after 1 yr of OPG overexpression in rats was associated with increased vertebral bone mass and proportional increases in bone strength, with no evidence for deleterious effects on vertebral material properties.


Asunto(s)
Densidad Ósea , Expresión Génica , Vértebras Lumbares/crecimiento & desarrollo , Osteoprotegerina/biosíntesis , Animales , Remodelación Ósea , Femenino , Vértebras Lumbares/metabolismo , Tamaño de los Órganos , Osteoclastos/metabolismo , Osteopetrosis/metabolismo , Osteoprotegerina/genética , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Factores de Tiempo
7.
J Bone Miner Res ; 24(2): 196-208, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19016594

RESUMEN

The role of osteoclast-mediated resorption during fracture healing was assessed. The impact of two osteoclast inhibitors with different mechanisms of action, alendronate (ALN) and denosumab (DMAB), were examined during fracture healing. Male human RANKL knock-in mice that express a chimeric (human/murine) form of RANKL received unilateral transverse femur fractures. Mice were treated biweekly with ALN 0.1 mg/kg, DMAB 10 mg/kg, or PBS (control) 0.1 ml until death at 21 and 42 days after fracture. Treatment efficacy assessed by serum levels of TRACP 5b showed almost a complete elimination of TRACP 5b levels in the DMAB-treated animals but only approximately 25% reduction of serum levels in the ALN-treated mice. Mechanical testing showed that fractured femurs from both ALN and DMAB groups had significantly increased mechanical properties at day 42 compared with controls. muCT analysis showed that callus tissues from DMAB-treated mice had significantly greater percent bone volume and BMD than did both control and ALN-treated tissues at both 21 and 42 days, whereas ALN-treated bones only had greater percent bone volume and BMC than control at 42 days. Qualitative histological analysis showed that the 21-and 42-day ALN and DMAB groups had greater amounts of unresorbed cartilage or mineralized cartilage matrix compared with the controls, whereas unresorbed cartilage could still be seen in the DMAB groups at 42 days after fracture. Although ALN and DMAB delayed the removal of cartilage and the remodeling of the fracture callus, this did not diminish the mechanical integrity of the healing fractures in mice receiving these treatments. In contrast, strength and stiffness were enhanced in these treatment groups compared with control bones.


Asunto(s)
Alendronato/farmacología , Anticuerpos Monoclonales/farmacología , Difosfonatos/farmacología , Fracturas del Fémur/patología , Fémur/patología , Curación de Fractura/efectos de los fármacos , Ligando RANK/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales Humanizados , Fenómenos Biomecánicos/efectos de los fármacos , Callo Óseo/efectos de los fármacos , Callo Óseo/patología , Denosumab , Fémur/efectos de los fármacos , Humanos , Ratones , Osteoclastos/efectos de los fármacos , Osteoclastos/patología , Ligando RANK/farmacología , Factores de Tiempo , Torsión Mecánica , Microtomografía por Rayos X
8.
J Bone Miner Res ; 23(5): 672-82, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18433301

RESUMEN

INTRODUCTION: Ovariectomy (OVX) results in bone loss caused by increased bone resorption. RANKL is an essential mediator of bone resorption. We examined whether the RANKL inhibitor osteoprotegerin (OPG) would preserve bone volume, density, and strength in OVX rats. MATERIALS AND METHODS: Rats were OVX or sham-operated at 3 mo of age. Sham controls were treated for 6 wk with vehicle (Veh, PBS). OVX rats were treated with Veh or human OPG-Fc (10 mg/kg, 2/wk). Serum RANKL and TRACP5b was measured by ELISA. BMD of lumbar vertebrae (L(1)-L(5)) and distal femur was measured by DXA. Right distal femurs were processed for bone histomorphometry. Left femurs and the fifth lumbar vertebra (L(5)) were analyzed by muCT and biomechanical testing, and L(6) was analyzed for ash weight. RESULTS: OVX was associated with significantly greater serum RANKL and osteoclast surface and with reduced areal and volumetric BMD. OPG markedly reduced osteoclast surface and serum TRACP5b while completely preventing OVX-associated bone loss in the lumbar vertebrae, distal femur, and femur neck. Vertebrae from OPG-treated rats had increased dry and ash weight, with no significant differences in tissue mineralization versus OVX controls. muCT showed that trabecular compartments in OVX-OPG rats had significantly greater bone volume fraction, vBMD, bone area, trabecular thickness, and number, whereas their cortical compartments had significantly greater bone area (p < 0.05 versus OVX-Veh). OPG improved cortical area in L(5) and the femur neck to levels that were significantly greater than OVX or sham controls (p < 0.05). Biomechanical testing of L(5) and femur necks showed significantly greater maximum load values in the OVX-OPG group (p < 0.05 versus OVX-Veh). Bone strength at both sites was linearly correlated with total bone area (r(2) = 0.54-0.74, p < 0.0001), which was also significantly increased by OPG (p < 0.05 versus OVX). CONCLUSIONS: OPG treatment prevented bone loss, preserved trabecular architecture, and increased cortical area and bone strength in OVX rats.


Asunto(s)
Huesos/anatomía & histología , Osteoprotegerina/fisiología , Ovariectomía , Ligando RANK/antagonistas & inhibidores , Animales , Femenino , Ligando RANK/genética , Ratas , Ratas Sprague-Dawley
9.
J Bone Miner Res ; 23(6): 860-9, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18269310

RESUMEN

INTRODUCTION: Sclerosteosis is a rare high bone mass genetic disorder in humans caused by inactivating mutations in SOST, the gene encoding sclerostin. Based on these data, sclerostin has emerged as a key negative regulator of bone mass. We generated SOST knockout (KO) mice to gain a more detailed understanding of the effects of sclerostin deficiency on bone. MATERIALS AND METHODS: Gene targeting was used to inactivate SOST and generate a line of SOST KO mice. Radiography, densitometry, microCT, histomorphometry, and mechanical testing were used to characterize the impact of sclerostin deficiency on bone in male and female mice. Comparisons were made between same sex KO and wildtype (WT) mice. RESULTS: The results for male and female SOST KO mice were similar, with differences only in the magnitude of some effects. SOST KO mice had increased radiodensity throughout the skeleton, with general skeletal morphology being normal in appearance. DXA analysis of lumbar vertebrae and whole leg showed that there was a significant increase in BMD (>50%) at both sites. microCT analysis of femur showed that bone volume was significantly increased in both the trabecular and cortical compartments. Histomorphometry of trabecular bone revealed a significant increase in osteoblast surface and no significant change in osteoclast surface in SOST KO mice. The bone formation rate in SOST KO mice was significantly increased for trabecular bone (>9-fold) at the distal femur, as well as for the endocortical and periosteal surfaces of the femur midshaft. Mechanical testing of lumbar vertebrae and femur showed that bone strength was significantly increased at both sites in SOST KO mice. CONCLUSIONS: SOST KO mice have a high bone mass phenotype characterized by marked increases in BMD, bone volume, bone formation, and bone strength. These results show that sclerostin is a key negative regulator of a powerful, evolutionarily conserved bone formation pathway that acts on both trabecular and cortical bone.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Huesos/metabolismo , Eliminación de Gen , Osteogénesis , Proteínas Adaptadoras Transductoras de Señales , Animales , Biomarcadores/sangre , Densidad Ósea , Proteínas Morfogenéticas Óseas/deficiencia , Proteínas Morfogenéticas Óseas/genética , Huesos/diagnóstico por imagen , Calcio/sangre , Femenino , Marcadores Genéticos/genética , Glicoproteínas , Péptidos y Proteínas de Señalización Intercelular , Masculino , Ratones , Ratones Noqueados , Fenotipo , Fosfatos/sangre , Estrés Mecánico , Tomografía Computarizada por Rayos X
10.
Foot Ankle Int ; 26(6): 462-73, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15960913

RESUMEN

BACKGROUND: The current treatment of displaced ligamentous injuries of the tarsometatarsal (TMT) joints is open reduction and rigid fixation using transarticular screws. This technique causes further articular surface damage that theoretically may increase the risk of arthritis. Should the screws break, hardware removal is difficult. An alternative method that avoids these potential complications is rigid fixation using dorsal plates. METHODS: The displacement between the first metatarsal and medial cuneiform, the second metatarsal and intermediate cuneiform, the first and second metatarsal bases, and the medial cuneiform and second metatarsal base were measured in 10 matched pairs of fresh-frozen cadaver lower extremities in the unloaded and loaded condition. After sectioning the Lisfranc and TMT joint ligaments, measurements were repeated in the loaded condition. The first and second TMT joints of the right feet were fixed with transarticular 3.5-mm cortical screws while those of the left feet with were fixed with dorsal 2.7-mm 1/4 tubular plates. Measurements were then repeated in the unloaded and loaded condition. RESULTS: After ligament sectioning, significantly increased first and second TMT joint subluxation with loading was seen. No significant difference was noted with direct comparison between plates and screws with respect to ability to realign the first and second TMT joints and to maintain TMT joint alignment during loading. The amount of articular surface destruction caused by one 3.5-mm screw was 2.0 +/- 0.7% for the medial cuneiform, 2.6 +/- 0.5% for the first metatarsal, 3.6 +/- 1.2% for the intermediate cuneiform, and 3.6 +/- 1.0% for the second metatarsal. CONCLUSIONS: The model reliably produced displacement of the first and second TMT joints consistent with a ligamentous Lisfranc injury. Transarticular screws and dorsal plates showed similar ability to reduce the first and second TMT joints after TMT and Lisfranc ligament transection and to resist TMT joint displacement with weightbearing load. CLINICAL RELEVANCE: Dorsal plating may be an alternative to transarticular screws in the treatment of displaced Lisfranc injuries.


Asunto(s)
Placas Óseas , Tornillos Óseos , Ligamentos Articulares/lesiones , Ligamentos Articulares/cirugía , Articulaciones Tarsianas/lesiones , Articulaciones Tarsianas/cirugía , Fenómenos Biomecánicos , Cadáver , Humanos , Huesos Metatarsianos/cirugía , Procedimientos Ortopédicos/instrumentación , Procedimientos Ortopédicos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...