Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Intervalo de año de publicación
1.
Nat Prod Res ; : 1-5, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39348222

RESUMEN

Chromatographic procedures of extracts of Schinus terebinthifolia Raddi fruits afforded (Z)-masticadienoic (1) and 3ß-masticadienolic (2) acids, tetrahydroamentoflavone (3), and 4-O-methyl gallic acid (4). Addicionally, the derivative 6-oxo masticadienoic acid (1a) was prepared by an allylic oxidation. The chemical structures of obtained compounds were elucidated by spectrometric data analyses. Furthermore, both the semi-synthetic derivative and the metabolites were subjected to in vitro cytotoxicity against the A549 human lung cancer cell line, as well as antimicrobial activity tests. Compounds 2 and 1a exhibited cytotoxicity towards A549 cells with IC50 values of 20.13 and 6.11 µM, respectively. In the tests against pathogens, the CHCl3 and EtOAc soluble fractions of MeOH extract along with the pure compounds, exhibited antibacterial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Except for 4-O-methyl gallic acid, the other pure compounds showed inhibitory microbial activities with MIC values ranging from 0.25 µg/mL to 25 µg/mL doses.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38693600

RESUMEN

BACKGROUND: The nerve growth factor (NGF) has been previously shown to be involved in cellular proliferation, differentiation, survival, or wound healing. This factor displays a variety of biological effects that yet remain to be explored. Previous data on cell lines show a pro-inflammatory role of NGF on monocytes. OBJECTIVES: The objective of the study was to investigate the pro-inflammatory effect of NGF, using a model of fresh human monocytes. METHODS: Monocytes obtained from PBMC were exposed to NGF at various concentrations. Alternatively, monocytes were exposed to BSA, the NGF carrier protein without the NGF. Gene expression and cytokine release in the supernatant were monitored. RESULTS: We found that NGF increased the expression of pro-inflammatory, chemotactic, and remodeling genes such as interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and C-X-C motif ligand (CXCL)8. The protein levels of CXCL8 and matrix metalloproteinase (MMP)-9 were also increased in the cell supernatants following NGF exposure. BSA alone was found to drive part of this response, bringing nuance to the inflammatory potential of the NGF. CONCLUSION: These data suggest that NGF is able to enhance monocyte inflammatory responses once cells are stimulated with another signal but is possibly not able to directly activate it. This could have implications for example in patients with bacterial infections, where NGF could worsen the local inflammation by over-activating immune cells.

3.
Fundam Clin Pharmacol ; 37(3): 619-628, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36579760

RESUMEN

In the present study, we examined the antinociceptive and anti-inflammatory activities of a guanylhydrazone derivative, (E)-(3,5-di-tert-butyl-4-hydroxybenzylidene)-2-guanylhydrazone hydrochloride (LQM10), in mice. The antinociceptive effect was determined by assessing behavioural responses in different pain models, while anti-inflammatory activity was examined in carrageenan-induced pleurisy. Intraperitoneal LQM10 administration reduced the acetic acid-induced nociceptive behaviour, a phenomenon that was unaltered by pretreatment with yohimbine, atropine, naloxone or glibenclamide. In the formalin assay, LQM10 reduced nociceptive behaviour only in the second phase, indicating an inhibitory effect on inflammatory pain. LQM10 did not alter the pain latency in the hot plate assay and did not impact the locomotor activity of mice in the rotarod assay. In the carrageenan-induced pleurisy assay, LQM10 treatment inhibited critical events involved in inflammatory responses, namely, leucocyte recruitment, plasma leakage and increased inflammatory mediators (tumour necrosis factor Like Properties of Chalchones and Flavonoid Derivatives [TNF]-α and interleukin [IL]-1ß) in the pleural exudate. Overall, these results indicate that LQM10 exhibits antinociceptive effects associated with peripheral mechanisms and anti-inflammatory activity mediated via a reduction in leucocyte migration and proinflammatory mediators, rendering this compound a promising candidate for treating pain and inflammatory process.


Asunto(s)
Analgésicos , Pleuresia , Animales , Ratones , Analgésicos/efectos adversos , Carragenina , Nocicepción , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Dolor/tratamiento farmacológico , Extractos Vegetales/farmacología , Pleuresia/inducido químicamente , Pleuresia/tratamiento farmacológico , Factor de Necrosis Tumoral alfa , Edema/inducido químicamente , Edema/tratamiento farmacológico
4.
J Biomed Mater Res A ; 111(2): 234-244, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36239143

RESUMEN

Microgrooved surfaces are recognized as an important strategy of tissue engineering to promote the alignment of bone cells. In this work, we have investigated the mechanical and morphological aspects of osteoblasts cells after interaction with different micro-structured polymeric surfaces. Femtosecond laser writing technique was used for the construction of circular and parallel microgrooved patterns in biocompatible polymeric surfaces based on pentaerythritol triacrylate. Additionally, we have studied the influence of the biocompatible TiO2 nanocrystals (NCs) related to the cell behavior, when incorporated to the photoresin. The atomic force microscopy technique was used to investigate the biomechanical reaction of the human osteoblast-like MG-63 cells for the different microgroove. It was demonstrated that osteoblasts grown on circular microgrooved surfaces exhibited significantly larger Young's modulus compared to cells sown on flat films. Furthermore, we could observe that TiO2 NCs improved the circular microgrooves effects, resulting in more populated sites, 34% more elongated cells, and increasing the cell stiffness by almost 160%. These results can guide the design and construction of effective scaffold surfaces with circular microgrooves for tissue engineering and bone regeneration.

5.
Antioxidants (Basel) ; 11(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36139733

RESUMEN

BACKGROUND: Gold nanoparticles (AuNPs) can inhibit pivotal pathological changes in experimental asthma, but their effect on steroid-insensitive asthma is unclear. The current study assessed the effectiveness of nebulized AuNPs in a murine model of glucocorticoid (GC)-resistant asthma. METHODS: A/J mice were sensitized and subjected to intranasal instillations of ovalbumin (OVA) once a week for nine weeks. Two weeks after starting allergen stimulations, mice were subjected to Budesonide or AuNP nebulization 1 h before stimuli. Analyses were carried out 24 h after the last provocation. RESULTS: We found that mice challenged with OVA had airway hyperreactivity, eosinophil, and neutrophil infiltrates in the lung, concomitantly with peribronchiolar fibrosis, mucus production, and pro-inflammatory cytokine generation compared to sham-challenged mice. These changes were inhibited in mice treated with AuNPs, but not Budesonide. In the GC-resistant asthmatic mice, oxidative stress was established, marked by a reduction in nuclear factor erythroid 2-related factor 2 (NRF2) levels and catalase activity, accompanied by elevated values of thiobarbituric acid reactive substances (TBARS), phosphoinositide 3-kinases δ (PI3Kδ) expression, as well as a reduction in the nuclear expression of histone deacetylase 2 (HDAC2) in the lung tissue, all of which sensitive to AuNPs but not Budesonide treatment. CONCLUSION: These findings suggest that AuNPs can improve GC-insensitive asthma by preserving HDAC2 and NRF2.

6.
Chem Biodivers ; 19(11): e202200256, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36174042

RESUMEN

An increasing morbidity and mortality rate has been related to arboviruses transmitted by Aedes aegypti. Compounds with cinnamoyl moiety represent an alternative against mosquitos, considering their larvicidal activity. This study aimed to assess the larvicidal activity of cinnamic ester derivates against Aedes aegypti larvae, along with evaluating their toxicity effect to assess its safety as a larvicide. Ethyl cinnamate demonstrated larvicidal activity (LC50 =48.59 µg/mL). Morphological changes in larvae were detected, as a degenerative response in the thorax. Through molecular docking, the molecular binding mode between 3b, 3c, and acetylcholinesterase showed strong hydrogen bond interactions. Preliminary in vitro cell viability revealed the non-cytotoxicity of 3c. Ecotoxicity results indicated a sensitivity of Artemia salina to cinnamic esters. The phytotoxicity bioassays show potential for cinnamic compounds to enhance germination and root development. These findings suggest that compound 3c is more suitable as a larvicide since it demonstrated low toxicity.


Asunto(s)
Aedes , Insecticidas , Animales , Insecticidas/toxicidad , Insecticidas/química , Ésteres/farmacología , Acetilcolinesterasa , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Larva
7.
Clin Exp Pharmacol Physiol ; 49(11): 1187-1196, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35876719

RESUMEN

The main risk factor for chronic obstructive pulmonary disease (COPD) is cigarette smoke (CS). It can alter many immune cells functions such as phagocytosis, efferocytosis and cytokine production. Cytokines play a role in the orchestration of inflammation in COPD. The JAK/STAT pathways are among the most important signalling components of cytokines. The objective of this work was to investigate the role of the JAK/STAT pathway with regard to cytokine release and microsphere uptake capacity (to minimize the non-specific scavenging) in human monocyte-derived-macrophages (MDMs). The MDMs were stimulated by cigarette smoke extract (CSE) alone or in combination with lipopolysaccharide (LPS). CSE alone was not associated with significant changes in the cytokine, with the exception of IL-8/CXCL8 production. However, CSE disturbed cytokine production in LPS-stimulated MDMs. CSE increase CXCL-8 and CCL2 release in LPS-stimulated monocyte-derived macrophages and suppressed the production of IL-6 and CXCL1 in these cells. CSE also decreased microsphere uptake capacity by MDMs. Then, CSE + LPS-stimulated MDMs were treated with two different JAK inhibitors. AG490 (specific inhibitor of JAK2) and ruxolitinib (inhibitor of JAK1 and JAK2). JAK/STAT inhibitors, particularly ruxolitinib, attenuated in cytokine production without completely inhibiting when compared with dexamethasone. On the other hand, the cells exposed to dexamethasone are nearly unable to capture the microspheres, while both JAK inhibitors do not affect the uptake capacity. In summary, our results showed the versatility of ruxolitinib which might bring a better balance disturbance of cytokine release and uptake capacity. The information regarding the distinctive effect of JAK/STAT inhibitors may be useful in the development of novel treatments for COPD.


Asunto(s)
Fumar Cigarrillos , Inhibidores de las Cinasas Janus , Enfermedad Pulmonar Obstructiva Crónica , Fumar Cigarrillos/efectos adversos , Citocinas/metabolismo , Dexametasona/farmacología , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Inhibidores de las Cinasas Janus/metabolismo , Inhibidores de las Cinasas Janus/farmacología , Quinasas Janus/metabolismo , Quinasas Janus/farmacología , Lipopolisacáridos/farmacología , Macrófagos , Monocitos/metabolismo , Nitrilos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Pirazoles , Pirimidinas , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/farmacología , Transducción de Señal/fisiología , Nicotiana/efectos adversos , Nicotiana/metabolismo
8.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35056161

RESUMEN

A series of coumarin derivatives and isosteres were synthesized from the reaction of triflic intermediates with phenylboronic acids, terminal alkynes, and organozinc compounds through palladium-catalyzed cross-coupling reactions. The in vitro cytotoxic effect of the compounds was evaluated against two non-small cell lung carcinoma (NSCLC) cell lines (A-549 and H2170) and a normal cell line (NIH-3T3) using cisplatin as a reference drug. Additionally, the effects of the most promising coumarin derivative (9f) in reversing the epithelial-to-mesenchymal transition (EMT) in IL-1ß-stimulated A549 cells and in inhibiting the EMT-associated migratory ability in A549 cells were also evaluated. 9f had the greatest cytotoxic effect (CC50 = 7.1 ± 0.8 and 3.3 ± 0.5 µM, respectively against A549 and H2170 cells) and CC50 value of 25.8 µM for NIH-3T3 cells. 9f inhibited the IL-1ß-induced EMT in epithelial cells by inhibiting the F-actin reorganization, attenuating changes in the actin cytoskeleton reorganization, and downregulating vimentin in A549 cells stimulated by IL-1ß. Treatment of A549 cells with 9f at 7 µM for 24 h significantly reduced the migration of IL-1ß-stimulated cells, which is a phenomenon confirmed by qualitative assessment of the wound closure. Taken together, our findings suggest that coumarin derivatives, especially compound 9f, may become a promising candidate for lung cancer therapy, especially in lung cancer promoted by NSCLC cell lines.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 265: 120328, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34481146

RESUMEN

Macrophages are key cells in the immune inflammatory response that can be differentiated into M1 and M2 phenotypes. Polarization has a critical therapeutic value, especially in diseases in which an M1/M2 imbalance plays a pathophysiological role. Raman spectroscopy has proven to be a promising bioanalytical technique for discriminating different cell types. However, to our knowledge, its application to identify the functional polarization of macrophages into M1 or M2 cells is yet to be investigated. In this work, Raman spectroscopy was applied to the analysis of macrophage polarization, and the spectral datasets were analyzed using principal component analysis (PCA). In vitro, resting J774.1 macrophages were treated with LPS/IFN-γ to induce the M1 phenotype or with IL-4 to induce the M2 phenotype. The resulting Raman spectra showed sufficient biochemical information to distinguish between M1 and M2 phenotypes when analyzed by PCA, reflecting the changes in cell markers caused by differentiation. The Raman spectra collected from LPS-stimulated M1 and M2 macrophages were more intense. The functional phenotype of M1 macrophages was confirmed by IL-6 secretion and TNF-α mRNA expression, while M2 macrophages produced IL-10 and Arg-1 mRNA, as well as by the morphological changes observed by scanning electron microscopy. Taken together, the results indicate that Raman spectroscopy combined with PCA analysis is a useful tool to identify the functional phenotypes of macrophages, providing an alternative way to distinguish between cells in distinct differentiation stages.


Asunto(s)
Macrófagos , Espectrometría Raman , Animales , Diferenciación Celular , Línea Celular , Lipopolisacáridos/farmacología , Ratones , Fenotipo
10.
Front Pharmacol ; 12: 787633, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912230

RESUMEN

The aim of this study was to obtain a Brazilian red propolis (BRP) enriched composite resin and to perform the characterization of its antibacterial activity, mechanical, and physical-chemical properties. Brazilian red propolis ethyl acetate extract (EABRP) was characterized by LC-ESI-Orbitrap-FTMS, UPLC-DAD, antibacterial activity, total flavonoids content, and radical scavenging capacity. BRP was incorporated to a commercial composite resin (RC) to obtain BRP enriched composite at 0.1, 0.15 and 0.25% (RP10, RP15 and RP25, respectively). The antibacterial activity RPs was evaluated against Streptococcus mutans by contact direct test and expressed by antibacterial ratio. The RPs were characterized as its cytotoxicity against 3T3 fibroblasts, flexural strength (FS), Knoop microhardness (KHN), post-cure depth (CD), degree of conversion (DC%), water sorption (Wsp), water solubility (Wsl), average roughness (Ra), and thermal analysis. Were identified 50 chemical compounds from BRP extract by LC-ESI-Orbitrap-FTMS. EABRP was bacteriostatic and bactericide at 125 and 500 µg/ml, respectively. The RP25 exhibited antibacterial ratio of 90.76% after 1 h of direct contact with S. mutans (p < 0.0001) while RC no showed significative antibacterial activity (p = 0.1865), both compared with cell control group. RPs and RC no showed cytotoxicity. RPs exhibited CD from 2.74 to 4.48 mm, DC% from 80.70 to 83.96%, Wsp from 17.15 to 21.67 µg/mm3, Wsl from 3.66 to 4.20 µg/mm3, Ra from 14.48 to 20.76 nm. RPs showed thermal resistance between 448-455°C. The results support that propolis can be used on development of modified composite resins that show antibacterial activity and that have compatible mechanical and physical-chemical properties to the indicate for composite resins.

11.
J Tissue Viability ; 30(3): 363-371, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34052086

RESUMEN

AIM: Hydroxycinnamic acids their derivatives have various pharmacological properties. The hydroxycinnamic acid derivatives, methyl cinnamate, trans-cinnamic, and p-coumaric acids have been the object of study in the treatment of skin wounds. However, it is unclear whether these derivatives exert a direct beneficial effect on fibroblast function. In this study, we evaluated the effects of methyl cinnamate, trans-cinnamic, and p-coumaric acids on fibroblast migration in vitro. MATERIALS AND METHODS: NIH 3T3 and L929 fibroblast cell lines were exposed to each drug at several concentrations and the effect on cell viability, cell cycle, and extracellular matrix production were assessed by MTT assay, flow cytometry, and immunofluorescence staining, respectively. The effect on cell migration was examined using scratch assay. RESULTS: The results showed that hydroxycinnamic acid derivatives not affect cell viability, but increase fibroblast migration in the in vitro scratch-wound healing assay. They also induced an increase in S and G2/M phases accompanied by a decrease in the G0/G1 phase of the cell cycle. The cell proliferation inhibitor mitomycin C abolished the effect induced by p-coumaric acid and methyl cinnamate, indicating that only the trans-cinnamic acid stimulated migration. A transwell migration assay confirmed that trans-cinnamic acid-treated fibroblasts exhibited increased migration compared with untreated cells. trans-Cinnamic acid-induced fibroblast migration was decreased by PKA inhibitor and p38-MAPK inhibitor but not by JNK inhibitor. Additionally, trans-cinnamic acid-treated fibroblasts showed an increase in the production of laminin and collagen type I. CONCLUSION: Our study showed that trans-cinnamic acid improves fibroblast migration and modulates extracellular matrix synthesis, indicating its potential for accelerating the healing process.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Cinamatos/farmacología , Fibroblastos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ácidos Cumáricos/farmacología , Fibroblastos/fisiología , Humanos , Cicatrización de Heridas/efectos de los fármacos
12.
Oxid Med Cell Longev ; 2021: 6646923, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33628371

RESUMEN

Inflammatory lung disease results in a high global burden of death and disability. There are no effective treatments for the most severe forms of many inflammatory lung diseases, such as chronic obstructive pulmonary disease, emphysema, corticosteroid-resistant asthma, and coronavirus disease 2019; hence, new treatment options are required. Here, we review the role of oxidative imbalance in the development of difficult-to-treat inflammatory lung diseases. The inflammation-induced overproduction of reactive oxygen species (ROS) means that endogenous antioxidants may not be sufficient to prevent oxidative damage, resulting in an oxidative imbalance in the lung. In turn, intracellular signaling events trigger the production of proinflammatory mediators that perpetuate and aggravate the inflammatory response and may lead to tissue damage. The production of high levels of ROS in inflammatory lung diseases can induce the phosphorylation of mitogen-activated protein kinases, the inactivation of phosphoinositide 3-kinase (PI3K) signaling and histone deacetylase 2, a decrease in glucocorticoid binding to its receptor, and thus resistance to glucocorticoid treatment. Hence, antioxidant treatment might be a therapeutic option for inflammatory lung diseases. Preclinical studies have shown that antioxidants (alone or combined with anti-inflammatory drugs) are effective in the treatment of inflammatory lung diseases, although the clinical evidence of efficacy is weaker. Despite the high level of evidence for the efficacy of antioxidants in the treatment of inflammatory lung diseases, the discovery and clinical investigation of safer, more efficacious compounds are now a priority.


Asunto(s)
Antioxidantes/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/metabolismo , Animales , Humanos , Inflamación/inmunología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Enfermedades Pulmonares/inmunología , Oxidación-Reducción/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Especies Reactivas de Oxígeno/metabolismo
13.
Eur J Pharmacol ; 897: 173929, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33561444

RESUMEN

Acute lung injury (ALI) remains to cause a high rate of mortality in critically ill patients. It is known that inflammation is a key factor in the pathogenesis of lipopolysaccharide (LPS)-induced ALI, which makes it a relevant approach to the treatment of ALI. In this study, we evaluated the potential of nasally instilled p-coumaric acid to prevent LPS-induced ALI in mice, by evaluating its effects on cellular and molecular targets involved in inflammatory response via in vitro and in silico approaches. Our results demonstrated that p-coumaric acid reduced both neutrophil accumulation and pro-inflammatory cytokine abundance, and simultaneously increased IL-10 production at the site of inflammation, potentially contributing to protection against LPS-induced ALI in mice. In the in vitro experiments, we observed inhibitory effects of p-coumaric acid against IL-6 and IL-8 production in stimulated A549 cells, as well as reactive oxygen species generation by neutrophils. In addition, p-coumaric acid treatment decreased neutrophil adhesion on the TNF-α-stimulated endothelial cells. According to the in silico predictions, p-coumaric acid reached stable interactions with both the ATP-binding site of IKKß as well as the regions within LFA-1, critical for interaction with ICAM-1, thereby suppressing the production of proinflammatory mediators and hindering the neutrophil infiltration, respectively. Collectively, these findings indicate that p-coumaric acid is a promising anti-inflammatory agent that can be used for developing a pharmaceutical drug for the treatment of ALI and other inflammatory disorders.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Antiinflamatorios/administración & dosificación , Ácidos Cumáricos/administración & dosificación , Pulmón/efectos de los fármacos , Células A549 , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Administración Intranasal , Animales , Antiinflamatorios/metabolismo , Sitios de Unión , Técnicas de Cocultivo , Simulación por Computador , Ácidos Cumáricos/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Mediadores de Inflamación/metabolismo , Lipopolisacáridos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Simulación del Acoplamiento Molecular , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo
14.
Nat Prod Res ; 35(24): 5872-5878, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32713206

RESUMEN

Cinnamic acids and their derivatives are found in abundance in fruits, vegetables, and other food products of plant origin. The trans-cinnamic and p-coumaric acids in particular have been a subject of research for the treatment of a diverse range of pathological conditions. However, it is unclear whether these derivatives exert a direct beneficial effect on the cells that play a role in regulating skin wound healing, such as fibroblasts. In this study, using in vitro scratch-wound healing assay, it was observed that treatment with trans-cinnamic acid resulted in increased migration of fibroblasts when compared with that of p-coumaric acid-treated cells, without any adverse effect on cell viability. Studies on the lipophilicity of these acids using the XLOGP3 algorithm showed that trans-cinnamic acid was more lipophilic than p-coumaric. Thus, the findings of this study indicated that the lipophilic characteristic of trans-cinnamic acid rendered it more suitable as a potential drug candidate.


Asunto(s)
Cinamatos , Ácidos Cumáricos , Cinamatos/farmacología , Ácidos Cumáricos/farmacología , Fibroblastos
15.
Rev Soc Bras Med Trop ; 53: e20200246, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33111909

RESUMEN

INTRODUCTION: Leprosy is a chronic infectious disease caused by Mycobacterium leprae.This study aimed to analyze the epidemiological, temporal, and spatial dynamics ofleprosy in a municipality in northeastern Brazil. METHODS: This is an ecological study on new leprosy cases in the population of Arapiraca (Alagoas, Northeast Region, Brazil), from 2008 to 2017. Data extracted from a national database were analyzed forepidemiological indicators, factors associated with physical disabilities, and spatialanalysis in the neighborhoods of Arapiraca. RESULTS: A total of 292 new cases of leprosy were recorded, particularly occurring among the following groups: women, the age group of 46-59 years, brown-skinned individuals, people with less than eight years of schooling, and urban residents; the new cases were also predominantly the tuberculoid form and were of the paucibacillary classification of the disease. Almost 1/3 of the people had some degree of physical disability, which was mainly associated with the group 60 years of age and older, black ethnicity, and the multibacillary clinical form of leprosy. The joinpoint regression showed a stationary temporal behavior of indicators. There was a heterogeneous spatial distribution with active transmission areas, especially in the neighborhoods Primavera, Baixão, Ouro Preto, and downtown. CONCLUSIONS: The epidemiological indicators revealed complexity in the process of leprosy development. These spatial and temporal studies are relevant to help in the planning, monitoring, and guidance of interventions in the municipality. The spatial analysis showed heterogeneous distribution in the analyzed neighborhoods.


Asunto(s)
Lepra , Adolescente , Adulto , Brasil/epidemiología , Personas con Discapacidad , Femenino , Humanos , Lepra/epidemiología , Masculino , Persona de Mediana Edad , Mycobacterium leprae , Análisis Espacial , Adulto Joven
16.
Molecules ; 25(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126422

RESUMEN

Uvaol is a natural pentacyclic triterpene that is widely found in olives and virgin olive oil, exerting various pharmacological properties. However, information remains limited about how it affects fibroblasts and endothelial cells in events associated with wound healing. Here, we report the effect of uvaol in the in vitro and in vivo healing process. We show the positive effects of uvaol on migration of fibroblasts and endothelial cells in the scratch assay. Protein synthesis of fibronectin and laminin (but not collagen type I) was improved in uvaol-treated fibroblasts. In comparison, tube formation by endothelial cells was enhanced after uvaol treatment. Mechanistically, the effects of uvaol on cell migration involved the PKA and p38-MAPK signaling pathway in endothelial cells but not in fibroblasts. Thus, the uvaol-induced migratory response was dependent on the PKA pathway. Finally, topical treatment with uvaol caused wounds to close faster than in the control treatment using experimental cutaneous wounds model in mice. In conclusion, uvaol positively affects the behavior of fibroblasts and endothelial cells, potentially promoting cutaneous healing.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Piel/efectos de los fármacos , Triterpenos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/citología , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Fibroblastos/citología , Cinética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Piel/patología , Piel/fisiopatología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Phytomedicine ; 70: 153229, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32361292

RESUMEN

BACKGROUND: Asthma is one of the most common chronic inflammatory conditions of the lungs in modern society. Asthma is associated with airway hyperresponsiveness and remodeling of the airways, with typical symptoms of cough, wheezing, shortness of breath and chest tightness. Interleukins (IL) play an integral role in its inflammatory pathogenesis. Medicinal herbs and secondary metabolites are gaining considerable attention due to their potential therapeutic role and pharmacological mechanisms as adjunct tools to synthetic bronchodilator drugs. PURPOSE: To systematically review the literature on the use of single or mixed plants extracts therapy in vivo experimental systems for asthma, emphasizing their regulations on IL production to improve lung. METHODS: Literature searches were performed on PubMed, EMBASE, Scopus and Web of Science databases. All articles in English were extracted from 1999 up to September 2019, assessed critically for data extraction. Studies investigating the effectiveness and safety of plant extracts administered; inflammatory cell count, immunoglobulin E (IgE) production and regulation of pro-inflammatory cytokine and T helper (Th) 1 and Th2-driven cytokine expression in bronchoalveolar lavage fluid (BALF) and lung of asthmatic animals were included. RESULTS: Four hundred and eighteen publications were identified and 51 met the inclusion criteria. Twenty-six studies described bioactive compounds from plant extracts. The most frequent immunopharmacological mechanisms described included reduction in IgE and eosinophilic recruitment, decreased mucus hypersecretion and airway hyperreactivity, enhancement of the balance of Th1/Th2 cytokine ratio, suppression of matrix metallopeptidase 9 (MMP-9) and reversal of structural alterations. CONCLUSION: Plant extract therapies have potential control activities on asthma symptoms by modulating the secretion of pro-inflammatory (IL-1ß, IL-8), Th17 (IL-17), anti-inflammatory (IL-10, IL-23, IL-31, IL-33), Th1 (IL-2, IL-12) and Th2 (IL-4, IL-5, IL-6, IL-13) cytokines, reducing the level of biomarkers of airway inflammation.

18.
PLoS One ; 15(3): e0229761, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32155179

RESUMEN

Cyclo-Gly-Pro (CGP) attenuates nociception, however its effects on salivary glands remain unclear. In this study, we investigated the acute effects of CGP on salivary flow and composition, and on the submandibular gland composition, compared with morphine. Besides, we characterized the effects of naloxone (a non-selective opioid receptor antagonist) on CGP- and morphine-induced salivary and glandular alterations in mice. After that, in silico analyses were performed to predict the interaction between CGP and opioid receptors. Morphine and CGP significantly reduced salivary flow and total protein concentration of saliva and naloxone restored them to the physiological levels. Morphine and CGP also reduced several infrared vibrational modes (Amide I, 1687-1594cm-1; Amide II, 1594-1494cm-1; CH2/CH3, 1488-1433cm-1; C = O, 1432-1365cm-1; PO2 asymmetric, 1290-1185cm-1; PO2 symmetric, 1135-999cm-1) and naloxone reverted these alterations. The in silico docking analysis demonstrated the interaction of polar contacts between the CGP and opioid receptor Cys219 residue. Altogether, we showed that salivary hypofunction and glandular changes elicited by CGP may occur through opioid receptor suggesting that the blockage of opioid receptors in superior cervical and submandibular ganglions may be a possible strategy to restore salivary secretion while maintaining antinociceptive action due its effects on the central nervous system.


Asunto(s)
Ganglios Parasimpáticos/efectos de los fármacos , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Péptidos Cíclicos/farmacología , Glándulas Salivales/efectos de los fármacos , Analgésicos Opioides/farmacología , Animales , Sitios de Unión , Ganglios Parasimpáticos/metabolismo , Ganglios Parasimpáticos/fisiología , Masculino , Ratones , Morfina/farmacología , Nocicepción , Unión Proteica , Receptores Opioides/química , Receptores Opioides/metabolismo , Saliva/metabolismo , Glándulas Salivales/metabolismo , Glándulas Salivales/fisiología
19.
J Ethnopharmacol ; 254: 112563, 2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31931158

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Poncianella pyramidalis (Leguminosae) is a Caatinga plant used in folk medicine because of its pharmacological properties, which include anti-inflammatory action. However, chemical compounds responsible for this effect have not yet been identified. AIM OF THE STUDY: This study aimed to evaluate the antioxidant, antinociceptive and anti-inflammatory effects of the ethyl acetate fraction from the inner bark of P. pyramidalis. MATERIAL AND METHODS: Total phenol content (TP) was estimated using the Folin-Ciocalteu reagent, while in vitro antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Chemical identification was done using LC-PDA/MS and LC-ESI/MS/MS. In vivo antinociceptive and anti-inflammatory properties were investigated using formalin, mechanical hypernociception and carrageenan-induced pleurisy assays in mice. RESULTS: TP was 525.08 ± 17.49 µg mg-1 gallic acid equivalent. The ethyl acetate fraction (EAF) inhibited 87.76% of the DPPH radical with an EC50 of 22.94 µg mL-1 and Antioxidant Activity Index of 1.74. LC-PDA/MS and LC-ESI/MS/MS identified 15 compounds that are mostly derived from gallic and ellagic acids. Regarding in vivo antinociceptive and anti-inflammatory activity, EAF (100 mg kg-1) significantly reduced the nociceptive response in the second phase of the formalin assay by 50% (p < 0.01) compared with the control group. In the hypernociception test, a significant (p < 0.001) anti-hyperalgesic effect of EAF (100 mg kg-1) was observed up to the third hour of evaluation (p < 0.001). In the carrageenan assay, EAF (100 mg kg-1) was shown to inhibit protein extravasation, increase total leukocytes and neutrophils, and inhibit mononuclear cells. CONCLUSION: These results demonstrate EAF from the inner bark of P. pyramidalis has strong in vitro antioxidant effect as well as in vivo antinociceptive and anti-inflammatory activities, which may be attributed to the bark being rich in phenolic compounds derived from gallic acid.


Asunto(s)
Acetatos/química , Analgésicos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Fabaceae/química , Analgésicos/química , Animales , Antiinflamatorios/química , Antioxidantes/química , Carragenina/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Dimensión del Dolor/efectos de los fármacos , Fenoles/análisis , Corteza de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/farmacología
20.
Medicines (Basel) ; 7(2)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973141

RESUMEN

Background: The purpose of this study was to record and analyze the knowledge of medicinal plant use in the community in urban areas of Maceió city, Brazil. Methods: A total of 113 patients from the basic healthcare unit were assessed. Results: Approximately 95% of the interviewed stated that the plants were used for medicinal purposes. The majority of respondents were women (94.7%) who were between 51-60 years of age. Forty-eight plant species belonging to 28 families were cited as useful for medicinal purposes. The main families encountered were Lamiaceae (16.6%), Asteraceae (8.3%), Myrtaceae (6.2%), Fabaceae (6.2%), Annonaceae (4.1%), Laureaceae (4.1%), Rutaceae (4.1%), and Zingiberaceae (4.1%). These plants were used to treat a wide range of disturbances, including gastrointestinal, respiratory, and cardiovascular diseases. The majority of the respondents used decoctions of leaves that were cultivated in house (58.4%) to make their herbal preparations. The respondents revealed that medicinal plant preparations were safe and unaware of that are risks associated with their use. Conclusions: Medicinal plants still play an important role in the medical practices of the urban population from Maceió, Brazil. Our results highlight the importance of these plants for local people and indicate the need for further scientific investigations to validate their use as a complementary therapy for disease control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...