Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Food Chem ; 370: 131017, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34507213

RESUMEN

The decrease in the use of K fertilizers may be relevant for developing countries that depend on imports, as well as for specific groups such as patients with chronic kidney disease, who have restricted K in their diets. However, the decrease in the use of K affects plant yield, requiring the study of alternatives to mitigate nutritional stress. Sodium is a beneficial element that can mitigate K deficiency, but studies on kale plants are lacking. We investigated the role of Na in kale grown with and without K in nutrient feed solution. Four treatments were used: abundant K, abundant K plus Na, deficient K, and deficient K plus Na. Low Na (2 mmol L-1) attenuated the symptoms of K deficiency in kale by minimizing leaf water loss and increasing pigment content, leaf area, and plant dry mass. The synergism between K and Na negatively affected the growth of kale plants.


Asunto(s)
Brassica , Fertilizantes , Humanos , Hojas de la Planta , Sodio , Agua
2.
Planta ; 254(5): 104, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686920

RESUMEN

MAIN CONCLUSION: Drought alone and drought plus warming will change the nutrient requirements and biomass distributions of Stylosanthes capitata, while warming will be advantageous only under well-watered condition for the next decades. Climate change effects on natural and managed ecosystems are difficult to predict due to its multi-factor nature. However, most studies that investigate the impacts of climate change factors on plants, such as warming or drought, were conducted under one single stress and controlled environments. In this study, we evaluated the effects of elevated temperature (+ 2 °C) (T) under different conditions of soil water availability (W) to understand the interactive effects of both factors on leaf, stem, and inflorescence macro and micronutrients concentration and biomass allocation of a tropical forage species, Stylosanthes capitata Vogel under field conditions. Temperature control was performed by a temperature free-air controlled enhancement (T-FACE) system. We observed that warming changed nutrient concentrations and plant growth depending on soil moisture levels, but the responses were specific for each plant organ. In general, we found that warming under well-watered conditions greatly improved nutrient concentration and biomass production, whilst the opposite effect was observed under non-irrigated and non-warmed conditions. However, under warmed and non-irrigated conditions, leaf biomass and leaf nutrient concentration were greatly reduced when compared to non-warmed and irrigated plants. Our findings suggest that warming (2 °C above ambient temperature) and drought, as well as both combined stresses, will change the nutrient requirements and biomass distributions between plant aerial organs of S. capitata in tropical ecosystems, which may impact animal feeding in the future.


Asunto(s)
Sequías , Fabaceae , Animales , Biomasa , Dióxido de Carbono , Cambio Climático , Ecosistema , Estado Nutricional , Suelo , Agua
3.
J Plant Physiol ; 258-259: 153374, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33626482

RESUMEN

The participation of plant cryptochromes in water deficit response mechanisms has been highlighted in several reports. However, the role of tomato (Solanum lycopersicum L.) cryptochrome 1a (cry1a) in the blue light fluence-dependent modulation of the water deficit response remains largely elusive. The tomato cry1a mutant and its wild-type counterpart were grown in water (no stress) or PEG6000 (osmotic stress) treatments under white light (60 µmol m-2 s-1) or from low to high blue light fluence (1, 5, 10, 15 and 25 µmol m-2 s-1). We first demonstrate that under nonstress conditions cry1a regulates seedling growth by mechanisms that involve pigmentation, lipid peroxidation and osmoprotectant accumulation in a blue light-dependent manner. In addition, we further highlighted under osmotic stress conditions that cry1a increased tomato growth by reduced malondialdehyde (MDA) and proline accumulation. Although blue light is an environmental signal that influences osmotic stress responses mediated by tomato cry1a, specific blue light fluence rates are required during these responses. Here, we show that CRY1a manipulation may be a potential biotechnological target to develop a drought-tolerant tomato variety. Nevertheless, the complete understanding of this phenomenon requires further investigation.


Asunto(s)
Criptocromos/metabolismo , Osmorregulación/genética , Presión Osmótica , Proteínas de Plantas/metabolismo , Solanum lycopersicum/fisiología , Luz , Solanum lycopersicum/genética
4.
Sci Total Environ ; 759: 143505, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33223164

RESUMEN

Tropical pastures play a significant role in the global carbon cycle and are crucial for world livestock production. Despite its importance, there is a paucity of field studies that clarify how tropical pasture species will be affected by environmental changes predicted for tropical regions. Using a temperature-free air-controlled enhancement (T-FACE) system, we increased canopy temperature (+2 °C over ambient) and evaluated the effects of warming under two soil moisture conditions in a factorial design over the physiology, forage production, and forage quality of a tropical forage legume, Stylosanthes capitata. Under well-watered conditions, warming increased the PSII efficiency, net photosynthesis, and aboveground biomass accumulation, but reduced forage quality and digestibility by decreasing crude protein content and increasing lignin content. Non-irrigated conditions under ambient temperature reduced leaf water status presumably promoting the reduction in net photosynthesis, forage production, and forage quality and digestibility. Under the combination of canopy warming and non-irrigated conditions, warming mitigated the effects of reduced soil moisture on leaf photosynthesis and biomass production, but a significant interaction reduced forage quality and digestibility more than under isolated treatments of warming or non-irrigated conditions. We found a potential physiological acclimation of the tropical forage species to moderate warming when grown under rainfed or well-watered conditions. However, this acclimation was achieved due to a trade-off that reduced forage nutritional value and digestibility that may impact future animal feeding, livestock production, and would contribute to methane emissions.


Asunto(s)
Fabaceae , Suelo , Aclimatación , Animales , Dióxido de Carbono , Fotosíntesis , Hojas de la Planta , Agua
5.
J Environ Manage ; 278(Pt 1): 111540, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33126195

RESUMEN

Temperature and soil water availability play important roles in the biogeochemical cycles of essential elements for plant growth, such as carbon (C), nitrogen (N), and phosphorus (P). In this study, we investigated how drought and warming impact C:N:P stoichiometric ratios of different plant organs (leaves, inflorescences, and stems), and biomass allocation and production of a field-grown pasture of Stylosanthes capitata, a tropical forage legume. We evaluated the effects of elevated temperature (+2 °C above ambient temperature) under two conditions of soil water availability, irrigated, and non-irrigated. In general, we observed that different functional plant organs showed distinct responses to drought and warming demonstrating how important is to evaluate different functional plant organs to unravel crop nutrient dynamics. In addition, interactive effects between warming and drought were observed in many situations, highlighting the importance of multifactorial studies. Our data showed that warming produced plants with more inflorescences, decreasing leaf:inflorescence ratio. However, only warming under well-watered conditions improved biomass production (in 38%). Warmed and irrigated plants showed higher stoichiometric homeostasis compared to other treatments. In an opposite direction, drought decreased P concentration and increased N:P ratios in different organs, reducing the stoichiometric homeostasis under both conditions of temperature. We have concluded that warm and well-watered conditions without restrictions in soil nutrient availability can enhance plant production, presumably due to a higher level of stoichiometric homeostasis.


Asunto(s)
Fabaceae , Suelo , Aire , Biomasa , Nitrógeno , Hojas de la Planta , Temperatura , Agua
6.
J Plant Physiol ; 252: 153243, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32758793

RESUMEN

The low-auxin-sensitivity tomato mutant, dgt, despite displaying reduced plant growth, has been linked to greater resistance to N deficiency. This led us to test the role of auxin resistance of dgt in NH4+ toxicity and N deficiency, compared to wild type tomato (cv. Micro-Tom, MT), grown in hydroponic media. A completely randomized design with three replications in a 2 × 4 factorial scheme was adopted, corresponding to the two tomato genotypes (MT and dgt), involving four nutritional treatments: NO3- (5 mM); NH4+ (5 mM); NO3- (5 mM) plus exogenous auxin (10 µM IAA); and N omission. The results show that NH4+ was toxic to MT but not to dgt. Under N deficiency, MT displayed a lower shoot NO3- content, a lower photosynthetic rate, and a decrease in both shoot and root dry weight. However, in dgt, no difference was observed in shoot NO3- content and photosynthetic rate between plants grown on NO3- or under N deficiency. In addition, dgt showed an increase in shoot dry weight under N deficiency. We highlight the role of auxin resistance in the adaptation of plants to NH4+ toxicity and N deficiency.


Asunto(s)
Compuestos de Amonio/toxicidad , Genotipo , Ácidos Indolacéticos/farmacología , Nitrógeno/deficiencia , Reguladores del Crecimiento de las Plantas/farmacología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Mutación
7.
PLoS One ; 15(6): e0234512, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32511280

RESUMEN

Nutritional deficiencies limit the growth of snap bean plants, therefore knowing the biological mechanisms involved in it is fundamental. This study is aimed to evaluate the damage caused by a deficiency of macronutrients in physiological variables that cause decreased growth and the appearance of visual symptoms in snap bean. Thus, we design a hydroponic system of snap bean cultivation in order to test the effect of macronutrient deficiencies in a controlled environment. The treatments consisted in evaluate the effects of lack of one macronutrient in time. To perform this, we used Hoagland and Arnon solution in its complete formulation (control) or without N, P; K; Mg, Ca or S in each treatment. Physiological, nutritional, and growth analyses were performed when visual deficiency symptoms of each omitted nutrient appeared. Thus, the omissions of N and P in the nutrient solution led to lower accumulations of all macronutrients in the shoot. And the K, Ca, Mg, and S omissions decreased the amounts of K, Ca, Mg, P, and S in the shoot of the snap bean plants when compared with the plants grown in the complete nutrient solution. With the lowest accumulation of macronutrients, the content of photosynthetic pigments and the photosynthetic rate were reduced, with harmful effects on plant growth. Thus, from the losses in dry matter production of the shoot, the order of limiting of macronutrients in bean plants was N < P < Ca < S < Mg < K, with a decrease of up to 86.2%, 80.1%, 51.2%, 46.5%, 25.6%, and 19.3%, respectively. The nitrogen deficiency is more evident, proven by symptoms such as chlorosis in the lower and upper third leaves and necrosis of the lower third leaves.


Asunto(s)
Nitrógeno/metabolismo , Nutrientes/metabolismo , Phaseolus/crecimiento & desarrollo , Fotosíntesis/genética , Ambiente Controlado , Hidroponía , Nutrientes/fisiología , Phaseolus/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Potasio/metabolismo
8.
PLoS One ; 15(3): e0223937, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32168346

RESUMEN

Panicum maximum Jacq. 'Mombaça' (Guinea grass) is a C4 forage grass widely used in tropical pastures for cattle feeding. In this study, we evaluated the isolated and combined effects of warming and elevated CO2 concentration [CO2] during summer on nutrient content, nutrient accumulation, nutrient use efficiency and growth of P. maximum under field conditions. Field temperature and [CO2] were controlled by temperature free-air controlled enhancement and free-air CO2 enrichment systems, respectively. We tested two levels of canopy temperature: ambient temperature (aT) and 2°C above ambient temperature (eT), as well as two levels of atmospheric [CO2]: ambient [CO2] (aCO2) and 200 ppm above ambient CO2 (eCO2). The experiment was established in a completely randomized design with four replications, in a 2×2 factorial scheme. After pasture establishment, plants were exposed to the treatments during 30 days, with evaluations at 9, 16, 23 and 30 days after the treatments started. Results were dependent on the time of the evaluation, but in the last evaluation (beginning of the grazing), contents of N, K, Mg and S did not change as a function of treatments. However, P decreased as a function of warming under both levels of [CO2], and Ca increased under [eCO2] combined with warming. There was an increase in root dry mass under warming treatment. Combined treatment increased N, Ca and S accumulation without a corresponding increase in the use efficiency of these same nutrients, indicating that the fertiliser dose should increase in the next decades due to climate change. Our short-term results in young and well fertilized pasture suggest that under the combination of [eCO2] and eT conditions, P. maximum productivity will increase and the nutritional requirement for N, Ca and S will also increase.


Asunto(s)
Dióxido de Carbono/farmacología , Calor , Nutrientes/análisis , Panicum/crecimiento & desarrollo , Alimentación Animal , Animales , Calcio/análisis , Dióxido de Carbono/química , Bovinos , Cambio Climático , Nitrógeno/análisis , Concentración Osmolar , Panicum/efectos de los fármacos , Suelo/química , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA