Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 8(342): 342ra78, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27280685

RESUMEN

α-Synuclein accumulation and mitochondrial dysfunction have both been strongly implicated in the pathogenesis of Parkinson's disease (PD), and the two appear to be related. Mitochondrial dysfunction leads to accumulation and oligomerization of α-synuclein, and increased levels of α-synuclein cause mitochondrial impairment, but the basis for this bidirectional interaction remains obscure. We now report that certain posttranslationally modified species of α-synuclein bind with high affinity to the TOM20 (translocase of the outer membrane 20) presequence receptor of the mitochondrial protein import machinery. This binding prevented the interaction of TOM20 with its co-receptor, TOM22, and impaired mitochondrial protein import. Consequently, there were deficient mitochondrial respiration, enhanced production of reactive oxygen species, and loss of mitochondrial membrane potential. Examination of postmortem brain tissue from PD patients revealed an aberrant α-synuclein-TOM20 interaction in nigrostriatal dopaminergic neurons that was associated with loss of imported mitochondrial proteins, thereby confirming this pathogenic process in the human disease. Modest knockdown of endogenous α-synuclein was sufficient to maintain mitochondrial protein import in an in vivo model of PD. Furthermore, in in vitro systems, overexpression of TOM20 or a mitochondrial targeting signal peptide had beneficial effects and preserved mitochondrial protein import. This study characterizes a pathogenic mechanism in PD, identifies toxic species of wild-type α-synuclein, and reveals potential new therapeutic strategies for neuroprotection.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Enfermedad de Parkinson/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , alfa-Sinucleína/metabolismo , Animales , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Enfermedad de Parkinson/genética , Unión Proteica , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Ratas , Ratas Mutantes , Receptores de Superficie Celular , Receptores Citoplasmáticos y Nucleares/genética , alfa-Sinucleína/genética
2.
Biochemistry ; 55(7): 985-8, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26859249

RESUMEN

The integration of membrane proteins into "lipid raft" membrane domains influences many biochemical processes. The intrinsic structural properties of membrane proteins are thought to mediate their partitioning between membrane domains. However, whether membrane topology influences the targeting of proteins to rafts remains unclear. To address this question, we examined the domain preference of three putative raft-associated membrane proteins with widely different topologies: human caveolin-3, C99 (the 99 residue C-terminal domain of the amyloid precursor protein), and peripheral myelin protein 22. We find that each of these proteins are excluded from the ordered domains of giant unilamellar vesicles containing coexisting liquid-ordered and liquid-disordered phases. Thus, the intrinsic structural properties of these three topologically distinct disease-linked proteins are insufficient to confer affinity for synthetic raft-like domains.


Asunto(s)
Precursor de Proteína beta-Amiloide/química , Caveolina 3/química , Microdominios de Membrana/química , Modelos Moleculares , Proteínas de la Mielina/química , Fragmentos de Péptidos/química , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Caveolina 3/genética , Caveolina 3/metabolismo , Colesterol/química , Colesterol/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microdominios de Membrana/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rodaminas/química , Esfingomielinas/química , Esfingomielinas/metabolismo , Liposomas Unilamelares
3.
Brain Res ; 1628(Pt B): 247-253, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26080075

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease, and the most prevalent degenerative movement disorder. It is estimated that the prevalence of such age-related neurodegenerative diseases will double in the next 25 years. While the etiology of Parkinson's disease is not entirely clear, a common link between both inherited and sporadic forms of disease is the protein α-synuclein. In PD brains, α-synuclein is typically found in large, insoluble protein aggregates referred to as Lewy bodies and Lewy neurites. The exact role of α-synuclein is still unknown, but it has been shown to undergo a variety of post-translational modifications, which impact α-synuclein aggregation and oligomer formation in different ways. This review highlights key post-translational modifications and the impact they have on α-synuclein aggregation and toxicity, elucidating potential mechanisms for PD pathogenesis and targets for future therapeutics. This article is part of a Special Issue entitled SI: Neuroprotection.


Asunto(s)
Encéfalo/metabolismo , Enfermedad de Parkinson/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , alfa-Sinucleína/metabolismo , Animales , Humanos , Enfermedad de Parkinson/patología
4.
Biochemistry ; 52(8): 1303-20, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23368985

RESUMEN

From roughly 1985 through the start of the new millennium, the cutting edge of solution protein nuclear magnetic resonance (NMR) spectroscopy was to a significant extent driven by the aspiration to determine structures. Here we survey recent advances in protein NMR that herald a renaissance in which a number of its most important applications reflect the broad problem-solving capability displayed by this method during its classical era during the 1970s and early 1980s.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Animales , Descubrimiento de Drogas , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular/historia , Conformación Proteica , Mapeo de Interacción de Proteínas/historia , Mapeo de Interacción de Proteínas/métodos , Proteínas/metabolismo
5.
J Am Chem Soc ; 135(4): 1317-29, 2013 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23265086

RESUMEN

The etiology of Alzheimer's disease depends on the relative abundance of different amyloid-ß (Aß) peptide species. These peptides are produced by sequential proteolytic cleavage within the transmembrane helix of the 99 residue C-terminal fragment of the amyloid precursor protein (C99) by the intramembrane protease γ-secretase. Intramembrane proteolysis is thought to require local unfolding of the substrate helix, which has been proposed to be cleaved as a homodimer. Here, we investigated the backbone dynamics of the substrate helix. Amide exchange experiments of monomeric recombinant C99 and of synthetic transmembrane domain peptides reveal that the N-terminal Gly-rich homodimerization domain exchanges much faster than the C-terminal cleavage region. MD simulations corroborate the differential backbone dynamics, indicate a bending motion at a diglycine motif connecting dimerization and cleavage regions, and detect significantly different H-bond stabilities at the initial cleavage sites. Our results are consistent with the following hypotheses about cleavage of the substrate: First, the GlyGly hinge may precisely position the substrate within γ-secretase such that its catalytic center must start proteolysis at the known initial cleavage sites. Second, the ratio of cleavage products formed by subsequent sequential proteolysis could be influenced by differential extents of solvation and by the stabilities of H-bonds at alternate initial sites. Third, the flexibility of the Gly-rich domain may facilitate substrate movement within the enzyme during sequential proteolysis. Fourth, dimerization may affect substrate processing by decreasing the dynamics of the dimerization region and by increasing that of the C-terminal part of the cleavage region.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Termodinámica , Secretasas de la Proteína Precursora del Amiloide/química , Péptidos beta-Amiloides/síntesis química , Péptidos beta-Amiloides/química , Modelos Moleculares
6.
Science ; 336(6085): 1168-71, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22654059

RESUMEN

C99 is the transmembrane carboxyl-terminal domain of the amyloid precursor protein that is cleaved by γ-secretase to release the amyloid-ß polypeptides, which are associated with Alzheimer's disease. Nuclear magnetic resonance and electron paramagnetic resonance spectroscopy show that the extracellular amino terminus of C99 includes a surface-embedded "N-helix" followed by a short "N-loop" connecting to the transmembrane domain (TMD). The TMD is a flexibly curved α helix, making it well suited for processive cleavage by γ-secretase. Titration of C99 reveals a binding site for cholesterol, providing mechanistic insight into how cholesterol promotes amyloidogenesis. Membrane-buried GXXXG motifs (G, Gly; X, any amino acid), which have an established role in oligomerization, were also shown to play a key role in cholesterol binding. The structure and cholesterol binding properties of C99 may aid in the design of Alzheimer's therapeutics.


Asunto(s)
Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Sitios de Unión , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Micelas , Datos de Secuencia Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/genética , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
7.
Biochemistry ; 50(47): 10328-42, 2011 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-21995415

RESUMEN

γ-Secretase modulators (GSMs) have received much attention as potential therapeutic agents for Alzheimer's disease (AD). GSMs increase the ratio between short and long forms of the amyloid-ß (Aß) polypeptides produced by γ-secretase and thereby decrease the amount of the toxic amyloid species. However, the mechanism of action of these agents is still poorly understood. One recent paper [Richter et al. (2010) Proc. Natl. Acad. Sci. U. S. A.107, 14597-14602] presented data that were interpreted to support direct binding of the GSM sulindac sulfide to Aß(42), supporting the notion that GSM action is linked to direct binding of these compounds to the Aß domain of its immediate precursor, the 99-residue C-terminal domain of the amyloid precursor protein (C99, also known as the ß-CTF). Here, contrasting results are presented that indicate there is no interaction between monomeric sulindac sulfide and monomeric forms of Aß42. Instead, it was observed that sulindac sulfide is itself prone to form aggregates that can bind nonspecifically to Aß42 and trigger its aggregation. This observation, combined with data from previous work [Beel et al. (2009) Biochemistry48, 11837-11839], suggests both that the poor behavior of some NSAID-based GSMs in solution may obscure results of binding assays and that NSAID-based GSMs do not function by directly targeting C99. It was also observed that another GSM, flurbiprofen, fails to bind to monomeric Aß42 or to C99 reconstituted into bilayered lipid vesicles. These results disfavor the hypothesis that these NSAID-based GSMs exert their modulatory effect by directly targeting a site located in the Aß42 domain of free C99.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Inhibidores Enzimáticos/farmacología , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Humanos , Cinética , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional
8.
Biochim Biophys Acta ; 1801(8): 975-82, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20304095

RESUMEN

It is generally believed that cholesterol homoeostasis in the brain is both linked to and impacted by Alzheimer's disease (AD). For example, elevated levels of cholesterol in neuronal plasma and endosome membranes appear to be a pro-amyloidogenic factor. The recent observation that the C-terminal transmembrane domain (C99, also known as the beta-C-terminal fragment, or beta-CTF) of the amyloid precursor protein (APP) specifically binds cholesterol helps to tie together previously loose ends in the web of our understanding of Alzheimer's-cholesterol relationships. In particular, binding of cholesterol to C99 appears to favor the amyloidogenic pathway in cells by promoting localization of C99 in lipid rafts. In turn, the products of this pathway-amyloid-beta and the intracellular domain of the APP (AICD)-may down-regulate ApoE-mediated cholesterol uptake and cholesterol biosynthesis. If confirmed, this negative-feedback loop for membrane cholesterol levels has implications for understanding the function of the APP and for devising anti-amyloidogenic preventive strategies for AD.


Asunto(s)
Enfermedad de Alzheimer/etiología , Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/metabolismo , Lípidos/fisiología , Enfermedad de Alzheimer/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Metabolismo de los Lípidos/fisiología , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...