Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0303789, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768102

RESUMEN

Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal disease caused by lowered activity of the enzyme alpha-L-iduronidase (IDUA). Current therapeutic options show limited efficacy and do not treat some important aspects of the disease. Therefore, it may be advantageous to identify strategies that could improve the efficacy of existing treatments. Pharmacological chaperones are small molecules that protect proteins from degradation, and their use in combination with enzyme replacement therapy (ERT) has been proposed as an alternative therapeutic strategy. Using the SEE-Tx® proprietary computational drug discovery platform, a new allosteric ligand binding cavity in IDUA was identified distal from the active site. Virtual high-throughput screening of approximately 5 million compounds using the SEE-Tx® docking platform identified a subset of small molecules that bound to the druggable cavity and functioned as novel allosteric chaperones of IDUA. Experimental validation by differential scanning fluorimetry showed an overall hit rate of 11.4%. Biophysical studies showed that one exemplary hit molecule GT-01803 bound to (Kd = 22 µM) and stabilized recombinant human IDUA (rhIDUA) in a dose-dependent manner. Co-administration of rhIDUA and GT-01803 increased IDUA activity in patient-derived fibroblasts. Preliminary in vivo studies have shown that GT-01803 improved the pharmacokinetic (PK) profile of rhIDUA, increasing plasma levels in a dose-dependent manner. Furthermore, GT-01803 also increased IDUA enzymatic activity in bone marrow tissue, which benefits least from standard ERT. Oral bioavailability of GT-01803 was found to be good (50%). Overall, the discovery and validation of a novel allosteric chaperone for rhIDUA presents a promising strategy to enhance the efficacy of existing treatments for MPS I. The compound's ability to increase rhIDUA activity in patient-derived fibroblasts and its good oral bioavailability underscore its potential as a potent adjunct to ERT, particularly for addressing aspects of the disease less responsive to standard treatment.


Asunto(s)
Iduronidasa , Mucopolisacaridosis I , Iduronidasa/metabolismo , Iduronidasa/genética , Mucopolisacaridosis I/tratamiento farmacológico , Humanos , Regulación Alostérica/efectos de los fármacos , Animales , Ratones , Terapia de Reemplazo Enzimático/métodos , Descubrimiento de Drogas , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Estabilidad de Enzimas , Simulación del Acoplamiento Molecular
2.
Bioorg Chem ; 145: 107233, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422591

RESUMEN

Dihydroceramide desaturase 1 (Des1) catalyzes the formation of a CC double bond in dihydroceramide to furnish ceramide. Inhibition of Des1 is related to cell cycle arrest and programmed cell death. The lack of the Des1 crystalline structure, as well as that of a close homologue, hampers the detailed understanding of its inhibition mechanism and difficults the design of new inhibitors, thus making Des1 a strategic target. Based on previous structure-activity studies, different ceramides containing rigid scaffolds were designed. The synthesis and evaluation of these compounds as Des1 inhibitors allowed the identification of PR280 as a better Des 1 inhibitor in vitro (IC50 = 700 nM) than GT11 and XM462, the current reference inhibitors. This cyclopropenone ceramide was obtained in a 6-step synthesis with a 24 % overall yield. The highly confident 3D structure of Des1, recently predicted by AlphaFold2, served as the basis for conducting docking studies of known Des1 inhibitors and the ceramide derivatives synthesized by us in this study. For this purpose, a complete holoprotein structure was previously constructed. This study has allowed a better knowledge of key ligand-enzyme interactions for Des1 inhibitory activity. Furthermore, it sheds some light on the inhibition mechanism of GT11.


Asunto(s)
Ceramidas , Oxidorreductasas , Ceramidas/farmacología , Ceramidas/química , Oxidorreductasas/metabolismo , Ciclopropanos/farmacología
3.
PLoS One ; 18(11): e0294437, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38019733

RESUMEN

Site-directed Enzyme Enhancement Therapy (SEE-Tx®) technology is a disease-agnostic drug discovery tool that can be applied to any protein target of interest with a known three-dimensional structure. We used this proprietary technology to identify and characterize the therapeutic potential of structurally targeted allosteric regulators (STARs) of the lysosomal hydrolase ß-galactosidase (ß-Gal), which is deficient due to gene mutations in galactosidase beta 1 (GLB1)-related lysosomal storage disorders (LSDs). The biochemical HaloTag cleavage assay was used to monitor the delivery of wildtype (WT) ß-Gal and four disease-related ß-Gal variants (p.Ile51Thr, p.Arg59His, p.Arg201Cys and p.Trp273Leu) in the presence and absence of two identified STAR compounds. In addition, the ability of STARs to reduce toxic substrate was assessed in a canine fibroblast cell model. In contrast to the competitive pharmacological chaperone N-nonyl-deoxygalactonojirimycin (NN-DGJ), the two identified STAR compounds stabilized and substantially enhanced the lysosomal transport of wildtype enzyme and disease-causing ß-Gal variants. In addition, the two STAR compounds reduced the intracellular accumulation of exogenous GM1 ganglioside, an effect not observed with the competitive chaperone NN-DGJ. This proof-of-concept study demonstrates that the SEE-Tx® platform is a rapid and cost-effective drug discovery tool for identifying STARs for the treatment of LSDs. In addition, the HaloTag assay developed in our lab has proved valuable in investigating the effect of STARs in promoting enzyme transport and lysosomal delivery. Automatization and upscaling of this assay would be beneficial for screening STARs as part of the drug discovery process.


Asunto(s)
Gangliosidosis GM1 , Enfermedades por Almacenamiento Lisosomal , Animales , Perros , Gangliosidosis GM1/tratamiento farmacológico , Gangliosidosis GM1/genética , Gangliosidosis GM1/metabolismo , 1-Desoxinojirimicina/farmacología , beta-Galactosidasa/metabolismo
4.
J Am Chem Soc ; 145(19): 10691-10699, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37154483

RESUMEN

A multi-responsive receptor consisting of two (acridinium-Zn(II) porphyrin) conjugates has been designed. The binding constant between this receptor and a ditopic guest has been modulated (i) upon addition of nucleophiles converting acridinium moieties into the non-aromatic acridane derivatives and (ii) upon oxidation of the porphyrin units. A total of eight states has been probed for this receptor resulting from the cascade of the recognition and responsive events. Moreover, the acridinium/acridane conversion leads to a significant change of the photophysical properties, switching from electron to energy transfer processes. Interestingly, for the bis(acridinium-Zn(II) porphyrin) receptor, charge-transfer luminescence in the near-infrared has been observed.

5.
J Med Chem ; 66(9): 6037-6046, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37083375

RESUMEN

Targeted protein degradation is a promising therapeutic strategy, spearheaded by the anti-myeloma drugs lenalidomide and pomalidomide. These drugs stabilize very efficiently the complex between the E3 ligase Cereblon (CRBN) and several non-native client proteins (neo-substrates), including the transcription factors Ikaros and Aiolos and the enzyme Caseine Kinase 1α (CK1α,), resulting in their degradation. Although the structures for these complexes have been determined, there are no evident interactions that can account for the high efficiency of formation of the ternary complex. We show that lenalidomide's stabilization of the CRBN-CK1α complex is largely due to hydrophobic shielding of intermolecular hydrogen bonds. We also find a quantitative relationship between hydrogen bond robustness and binding affinities of the ternary complexes. These results pave the way to further understand cooperativity effects in drug-induced protein-protein complexes and could help in the design of improved molecular glues and more efficient protein degraders.


Asunto(s)
Mieloma Múltiple , Humanos , Lenalidomida/farmacología , Lenalidomida/química , Mieloma Múltiple/tratamiento farmacológico , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis , Factores de Transcripción/metabolismo , Péptido Hidrolasas/metabolismo
6.
J Med Chem ; 65(14): 9691-9705, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35737472

RESUMEN

Computer-aided drug discovery methods play a major role in the development of therapeutically important small molecules, but their performance needs to be improved. Molecular dynamics simulations in mixed solvents are useful in understanding protein-ligand recognition and improving molecular docking predictions. In this work, we used ethanol as a cosolvent to find relevant interactions for ligands toward protein kinase G, an essential protein of Mycobacterium tuberculosis (Mtb). We validated the hot spots by screening a database of fragment-like compounds and another one of known kinase inhibitors. Next, we performed a pharmacophore-guided docking simulation and found three low micromolar inhibitors, including one with a novel chemical scaffold that we expanded to four derivative compounds. Binding affinities were characterized by intrinsic fluorescence quenching assays, isothermal titration calorimetry, and the analysis of melting curves. The predicted binding mode was confirmed by X-ray crystallography. Finally, the compounds significantly inhibited the viability of Mtb in infected THP-1 macrophages.


Asunto(s)
Mycobacterium tuberculosis , Sitios de Unión , Proteínas Quinasas Dependientes de GMP Cíclico , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología
7.
Antibiotics (Basel) ; 11(5)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35625201

RESUMEN

With the uncontrolled growth of multidrug-resistant bacteria, there is an urgent need to search for new therapeutic targets, to develop drugs with novel modes of bactericidal action. FoF1-ATP synthase plays a crucial role in bacterial bioenergetic processes, and it has emerged as an attractive antimicrobial target, validated by the pharmaceutical approval of an inhibitor to treat multidrug-resistant tuberculosis. In this work, we aimed to design, through two types of in silico strategies, new allosteric inhibitors of the ATP synthase, by targeting the catalytic ß subunit, a centerpiece in communication between rotor subunits and catalytic sites, to drive the rotary mechanism. As a model system, we used the F1 sector of Escherichia coli, a bacterium included in the priority list of multidrug-resistant pathogens. Drug-like molecules and an IF1-derived peptide, designed through molecular dynamics simulations and sequence mining approaches, respectively, exhibited in vitro micromolar inhibitor potency against F1. An analysis of bacterial and Mammalia sequences of the key structural helix-turn-turn motif of the C-terminal domain of the ß subunit revealed highly and moderately conserved positions that could be exploited for the development of new species-specific allosteric inhibitors. To our knowledge, these inhibitors are the first binders computationally designed against the catalytic subunit of FOF1-ATP synthase.

8.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563148

RESUMEN

The prediction of how a ligand binds to its target is an essential step for Structure-Based Drug Design (SBDD) methods. Molecular docking is a standard tool to predict the binding mode of a ligand to its macromolecular receptor and to quantify their mutual complementarity, with multiple applications in drug design. However, docking programs do not always find correct solutions, either because they are not sampled or due to inaccuracies in the scoring functions. Quantifying the docking performance in real scenarios is essential to understanding their limitations, managing expectations and guiding future developments. Here, we present a fully automated pipeline for pose prediction validated by participating in the Continuous Evaluation of Ligand Pose Prediction (CELPP) Challenge. Acknowledging the intrinsic limitations of the docking method, we devised a strategy to automatically mine and exploit pre-existing data, defining-whenever possible-empirical restraints to guide the docking process. We prove that the pipeline is able to generate predictions for most of the proposed targets as well as obtain poses with low RMSD values when compared to the crystal structure. All things considered, our pipeline highlights some major challenges in the automatic prediction of protein-ligand complexes, which will be addressed in future versions of the pipeline.


Asunto(s)
Diseño de Fármacos , Sitios de Unión , Cristalografía por Rayos X , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica
9.
Bioorg Chem ; 121: 105668, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35219046

RESUMEN

Sphingosine kinase (SphK), which catalyzes the transfer of phosphate from ATP to sphingosine (Sph) generating sphingosine-1-phosphate (S1P) has emerged as therapeutic target since the discovery of connections of S1P with cancer progress. So far, most effort has focused on the development of inhibitors of SphK1, and selective inhibitors of SphK2 have been much less explored. Here, we describe the syntheses of new sphingosine derivatives bearing a tetrasubstituted carbon atom at C-2, dimethylhydrazino or azo moieties in the polar head, and alkane, alkene or alkyne moieties as linkers between the polar ahead and the fatty tail. In vitro inhibitory assays based on a time resolved fluorescence energy transfer (TR-FRET) have revealed the hydrazino and alkynyl moieties as the best combination for the design of selective SphK2 inhibitors (19a and 19b). Docking studies showed that compounds 19a-b have the optimal binding to SphK2 through the exploitation of polar but also hydrophobic interactions of their head group with the head of the enzyme binding pocket, while also producing full contact of the fatty tail with the hydrophobic pocket of the enzyme. By contrast, this elongation causes loss of contact surface with the shorter hydrophobic toe of the SphK1 isoform, thus accounting for the SphK2-biased selectivity of these compounds. Cell viability assays of the most promising candidates 19a-b have shown that 19a is not cytotoxic to human endothelial cells at 30 µM.


Asunto(s)
Antineoplásicos , Esfingosina , Antineoplásicos/farmacología , Células Endoteliales/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Fosfotransferasas (Aceptor de Grupo Alcohol)
10.
Curr Drug Discov Technol ; 19(2): 62-68, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34951392

RESUMEN

BACKGROUND: Mixed solvents MD (MDmix) simulations have proved to be a useful and increasingly accepted technique with several applications in structure-based drug discovery. One of the assumptions behind the methodology is the transferability of free energy values from the simulated cosolvent molecules to larger drug-like molecules. However, the binding free energy maps (ΔGbind) calculated for the different moieties of the cosolvent molecules (e.g. a hydroxyl map for the ethanol) are largely influenced by the rest of the solvent molecule and do not reflect the intrinsic affinity of the moiety in question. As such, they are hardly transferable to different molecules. METHOD: To achieve transferable energies, we present here a method for decomposing the molecular binding free energy into accurate atomic contributions. RESULT: We demonstrate with two qualitative visual examples how the corrected energy maps better match known binding hotspots and how they can reveal hidden hotspots with actual drug design potential. CONCLUSION: Atomic decomposition of binding free energies derived from MDmix simulations provides transferable and quantitative binding free energy maps.


Asunto(s)
Diseño de Fármacos , Simulación de Dinámica Molecular , Descubrimiento de Drogas , Solventes/química
11.
J Med Chem ; 64(24): 17887-17900, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34898210

RESUMEN

Fragment-based drug discovery (FBDD) is a very effective hit identification method. However, the evolution of fragment hits into suitable leads remains challenging and largely artisanal. Fragment evolution is often scaffold-centric, meaning that its outcome depends crucially on the chemical structure of the starting fragment. Considering that fragment screening libraries cover only a small proportion of the corresponding chemical space, hits should be seen as probes highlighting privileged areas of the chemical space rather than actual starting points. We have developed an automated computational pipeline to mine the chemical space around any specific fragment hit, rapidly finding analogues that share a common interaction motif but are structurally novel and diverse. On a prospective application on the bromodomain-containing protein 4 (BRD4), starting from a known fragment, the platform yields active molecules with nonobvious scaffold changes. The procedure is fast and inexpensive and has the potential to uncover many hidden opportunities in FBDD.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Factores de Transcripción/metabolismo , Automatización , Descubrimiento de Drogas/métodos , Humanos , Ligandos
12.
Drug Discov Today Technol ; 40: 44-57, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34916022

RESUMEN

Fragment-based drug discovery (FBDD) emerged as a disruptive technology and became established during the last two decades. Its rationality and low entry costs make it appealing, and the numerous examples of approved drugs discovered through FBDD validate the approach. However, FBDD still faces numerous challenges. Perhaps the most important one is the transformation of the initial fragment hits into viable leads. Fragment-to-lead (F2L) optimization is resource-intensive and is therefore limited in the possibilities that can be actively pursued. In silico strategies play an important role in F2L, as they can perform a deeper exploration of chemical space, prioritize molecules with high probabilities of being active and generate non-obvious ideas. Here we provide a critical overview of current in silico strategies in F2L optimization and highlight their remarkable impact. While very effective, most solutions are target- or fragment- specific. We propose that fully integrated in silico strategies, capable of automatically and systematically exploring the fast-growing available chemical space can have a significant impact on accelerating the release of fragment originated drugs.


Asunto(s)
Descubrimiento de Drogas
13.
J Comput Aided Mol Des ; 35(2): 209-222, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33464434

RESUMEN

The design of new host-guest complexes represents a fundamental challenge in supramolecular chemistry. At the same time, it opens new opportunities in material sciences or biotechnological applications. A computational tool capable of automatically predicting the binding free energy of any host-guest complex would be a great aid in the design of new host systems, or to identify new guest molecules for a given host. We aim to build such a platform and have used the SAMPL7 challenge to test several methods and design a specific computational pipeline. Predictions will be based on machine learning (when previous knowledge is available) or a physics-based method (otherwise). The formerly delivered predictions with an RMSE of 1.67 kcal/mol but will require further work to identify when a specific system is outside of the scope of the model. The latter is combines the semiempirical GFN2B functional, with docking, molecular mechanics, and molecular dynamics. Correct predictions (RMSE of 1.45 kcal/mol) are contingent on the identification of the correct binding mode, which can be very challenging for host-guest systems with a large number of degrees of freedom. Participation in the blind SAMPL7 challenge provided fundamental direction to the project. More advanced versions of the pipeline will be tested against future SAMPL challenges.


Asunto(s)
Proteínas/química , Sitios de Unión , Ligandos , Aprendizaje Automático , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Programas Informáticos , Solventes/química , Termodinámica
14.
Chembiochem ; 22(9): 1597-1608, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33400854

RESUMEN

SMYD3 is a multifunctional epigenetic enzyme with lysine methyltransferase activity and various interaction partners. It is implicated in the pathophysiology of cancers but with an unclear mechanism. To discover tool compounds for clarifying its biochemistry and potential as a therapeutic target, a set of drug-like compounds was screened in a biosensor-based competition assay. Diperodon was identified as an allosteric ligand; its R and S enantiomers were isolated, and their affinities to SMYD3 were determined (KD =42 and 84 µM, respectively). Co-crystallization revealed that both enantiomers bind to a previously unidentified allosteric site in the C-terminal protein binding domain, consistent with its weak inhibitory effect. No competition between diperodon and HSP90 (a known SMYD3 interaction partner) was observed although SMYD3-HSP90 binding was confirmed (KD =13 µM). Diperodon clearly represents a novel starting point for the design of tool compounds interacting with a druggable allosteric site, suitable for the exploration of noncatalytic SMYD3 functions and therapeutics with new mechanisms of action.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Sitio Alostérico , Sitios de Unión , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Proteínas HSP90 de Choque Térmico/química , N-Metiltransferasa de Histona-Lisina/química , Humanos , Cinética , Ligandos , Simulación de Dinámica Molecular , Piperidinas/química , Piperidinas/metabolismo , Unión Proteica , Estereoisomerismo
15.
Bioinformatics ; 37(10): 1376-1382, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33226061

RESUMEN

MOTIVATION: Machine-learning scoring functions (SFs) have been found to outperform standard SFs for binding affinity prediction of protein-ligand complexes. A plethora of reports focus on the implementation of increasingly complex algorithms, while the chemical description of the system has not been fully exploited. RESULTS: Herein, we introduce Extended Connectivity Interaction Features (ECIF) to describe protein-ligand complexes and build machine-learning SFs with improved predictions of binding affinity. ECIF are a set of protein-ligand atom-type pair counts that take into account each atom's connectivity to describe it and thus define the pair types. ECIF were used to build different machine-learning models to predict protein-ligand affinities (pKd/pKi). The models were evaluated in terms of 'scoring power' on the Comparative Assessment of Scoring Functions 2016. The best models built on ECIF achieved Pearson correlation coefficients of 0.857 when used on its own, and 0.866 when used in combination with ligand descriptors, demonstrating ECIF descriptive power. AVAILABILITY AND IMPLEMENTATION: Data and code to reproduce all the results are freely available at https://github.com/DIFACQUIM/ECIF. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Aprendizaje Automático , Proteínas , Algoritmos , Ligandos , Unión Proteica , Proteínas/metabolismo
16.
J Chem Inf Model ; 60(3): 1644-1651, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32052965

RESUMEN

The prediction of a ligand's binding mode into its macromolecular target is essential in structure-based drug discovery. Even though tremendous effort has been made to address this problem, most of the developed tools work similarly, trying to predict the binding free energy associated with each particular binding mode. In this study, we decided to abandon this criterion, following structural stability instead. This view, implemented in a novel computational workflow, quantifies the steepness of the local energy minimum associated with each potential binding mode. Surprisingly, the protocol outperforms docking scoring functions in case of fragments (ligands with MW < 300 Da) and is as good as docking for drug-like molecules. It also identifies substructures that act as structural anchors, predicting their binding mode with particular accuracy. The results open a new physical perspective for binding mode prediction, which can be combined with existing thermodynamic-based approaches.


Asunto(s)
Descubrimiento de Drogas , Proteínas , Sitios de Unión , Ligandos , Unión Proteica , Proteínas/metabolismo , Termodinámica
17.
RSC Med Chem ; 11(5): 552-558, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479656

RESUMEN

One of the key motifs of type I kinase inhibitors is their interactions with the hinge region of ATP binding sites. These interactions contribute significantly to the potency of the inhibitors; however, only a tiny fraction of the available chemical space has been explored with kinase inhibitors reported in the last twenty years. This paper describes a workflow utilizing docking with rDock and dynamic undocking (DUck) for the virtual screening of fragment libraries in order to identify fragments that bind to the kinase hinge region. We have identified 8-amino-2H-isoquinolin-1-one (MR1), a novel and potent hinge binding fragment, which was experimentally tested on a diverse set of kinases, and is hereby suggested for future fragment growing or merging efforts against various kinases, particularly MELK. Direct binding of MR1 to MELK was confirmed by STD-NMR, and its binding to the ATP-pocket was confirmed by a new competitive binding assay based on microscale thermophoresis.

18.
J Chem Inf Model ; 59(8): 3572-3583, 2019 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-31373819

RESUMEN

Virtual screening of large compound databases, looking for potential ligands of a target protein, is a major tool in computer-aided drug discovery. Throughout the years, different techniques such as similarity searching, pharmacophore matching, or molecular docking have been applied with the aim of finding hit compounds showing appreciable affinity. Molecular dynamics simulations in mixed solvents have been shown to identify hot spots relevant for protein-drug interaction, and implementations based on this knowledge were developed to improve pharmacophore matching of small molecules, binding free-energy estimations, and docking performance in terms of pose prediction. Here, we proved in a retrospective manner that cosolvent-derived pharmacophores from molecular dynamics (solvent sites) improve the performance of docking-based virtual screening campaigns. We applied a biased docking scheme based on solvent sites to nine relevant target proteins that have a set of known ligands or actives and compounds that are, presumably, nonbinders (decoys). Our results show improvement in virtual screening performance compared to traditional docking programs both at a global level, with up to 35% increase in areas under the receiver operating characteristic curve, and in early stages, with up to a 7-fold increase in enrichment factors at 1%. However, the improvement in pose prediction of actives was less profound. The presented application makes use of the AutoDock Bias method and is the only cosolvent-derived pharmacophore technique that employs its knowledge both in the ligand conformational search algorithm and the final affinity scoring for virtual screening purposes.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Simulación del Acoplamiento Molecular , Proteínas/química , Proteínas/metabolismo , Solventes/química , Ligandos , Conformación Proteica , Interfaz Usuario-Computador
19.
ChemMedChem ; 14(10): 1011-1021, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30786178

RESUMEN

Thanks to recent guidelines, the design of safe and effective covalent drugs has gained significant interest. Other than targeting non-conserved nucleophilic residues, optimizing the noncovalent binding framework is important to improve potency and selectivity of covalent binders toward the desired target. Significant efforts have been made in extending the computational toolkits to include a covalent mechanism of protein targeting, like in the development of covalent docking methods for binding mode prediction. To highlight the value of the noncovalent complex in the covalent binding process, here we describe a new protocol using tethered and constrained docking in combination with Dynamic Undocking (DUck) as a tool to privilege strong protein binders for the identification of novel covalent inhibitors. At the end of the protocol, dedicated covalent docking methods were used to rank and select the virtual hits based on the predicted binding mode. By validating the method on JAK3 and KRas, we demonstrate how this fast iterative protocol can be applied to explore a wide chemical space and identify potent targeted covalent inhibitors.


Asunto(s)
Inhibidores Enzimáticos/química , Janus Quinasa 3/química , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Recombinantes/química , Bibliotecas de Moléculas Pequeñas/química , Apoptosis , Sitios de Unión , Línea Celular , Supervivencia Celular , Escherichia coli , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Programas Informáticos , Relación Estructura-Actividad
20.
Chem Sci ; 11(5): 1368-1374, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34123261

RESUMEN

Keratin 1 (KRT1) is overexpressed in squamous carcinomas and associated with aggressive pathologies in breast cancer. Herein we report the design and preparation of the first Trp-based red fluorogenic amino acid, which is synthetically accessible in a few steps and displays excellent photophysical properties, and its application in a minimally-disruptive labelling strategy to prepare a new fluorogenic cyclopeptide for imaging of KRT1+ cells in whole intact tumour tissues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA