Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10900, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740799

RESUMEN

By studying a nonlinear model by inspecting a p-dimensional parameter space through ( p - 1 ) -dimensional cuts, one can detect changes that are only determined by the geometry of the manifolds that make up the bifurcation set. We refer to these changes as geometric bifurcations. They can be understood within the framework of the theory of singularities for differentiable mappings and, in particular, of the Morse Theory. Working with a three-dimensional parameter space, geometric bifurcations are illustrated in two models of neuron activity: the Hindmarsh-Rose and the FitzHugh-Nagumo systems. Both are fast-slow systems with a small parameter that controls the time scale of a slow variable. Geometric bifurcations are observed on slices corresponding to fixed values of this distinguished small parameter, but they should be of interest to anyone studying bifurcation diagrams in the context of nonlinear phenomena.

2.
Phys Rev E ; 109(1-1): 014301, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38366490

RESUMEN

In this article we focus on the study of the collective dynamics of neural networks. The analysis of two recent models of coupled "next-generation" neural mass models allows us to observe different global mean dynamics of large neural populations. These models describe the mean dynamics of all-to-all coupled networks of quadratic integrate-and-fire spiking neurons. In addition, one of these models considers the influence of the synaptic adaptation mechanism on the macroscopic dynamics. We show how both models are related through a parameter and we study the evolution of the dynamics when switching from one model to the other by varying that parameter. Interestingly, we have detected three main dynamical regimes in the coupled models: Rössler-type (funnel type), bursting-type, and spiking-like (oscillator-type) dynamics. This result opens the question of which regime is the most suitable for realistic simulations of large neural networks and shows the possibility of the emergence of chaotic collective dynamics when synaptic adaptation is very weak.


Asunto(s)
Fragilidad , Modelos Neurológicos , Humanos , Neuronas/fisiología , Redes Neurales de la Computación , Potenciales de Acción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...