Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36501973

RESUMEN

Smart cities can be complemented by fusing various components and incorporating recent emerging technologies. IoT communications are crucial to smart city operations, which are designed to support the concept of a "Smart City" by utilising the most cutting-edge communication technologies to enhance city administration and resident services. Smart cities have been outfitted with numerous IoT-based gadgets; the Internet of Things is a modular method to integrate various sensors with all ICT technologies. This paper provides an overview of smart cities' concepts, characteristics, and applications. We thoroughly investigate smart city applications, challenges, and possibilities with solutions in recent technological trends and perspectives, such as machine learning and blockchain. We discuss cloud and fog IoT ecosystems in the in capacity of IoT devices, architectures, and machine learning approaches. In addition we integrate security and privacy aspects, including blockchain applications, towards more trustworthy and resilient smart cities. We also highlight the concepts, characteristics, and applications of smart cities and provide a conceptual model of the smart city mega-events framework. Finally, we outline the impact of recent emerging technologies' implications on challenges, applications, and solutions for futuristic smart cities.


Asunto(s)
Cadena de Bloques , Ecosistema , Ciudades , Comunicación , Tecnología de la Información
2.
Comput Biol Med ; 139: 104961, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34741906

RESUMEN

Lung cancer, also known as pulmonary cancer, is one of the deadliest cancers, but yet curable if detected at the early stage. At present, the ambiguous features of the lung cancer nodule make the computer-aided automatic diagnosis a challenging task. To alleviate this, we present LungNet, a novel hybrid deep-convolutional neural network-based model, trained with CT scan and wearable sensor-based medical IoT (MIoT) data. LungNet consists of a unique 22-layers Convolutional Neural Network (CNN), which combines latent features that are learned from CT scan images and MIoT data to enhance the diagnostic accuracy of the system. Operated from a centralized server, the network has been trained with a balanced dataset having 525,000 images that can classify lung cancer into five classes with high accuracy (96.81%) and low false positive rate (3.35%), outperforming similar CNN-based classifiers. Moreover, it classifies the stage-1 and stage-2 lung cancers into 1A, 1B, 2A and 2B sub-classes with 91.6% accuracy and false positive rate of 7.25%. High predictive capability accompanied with sub-stage classification renders LungNet as a promising prospect in developing CNN-based automatic lung cancer diagnosis systems.


Asunto(s)
Neoplasias Pulmonares , Dispositivos Electrónicos Vestibles , Humanos , Pulmón , Neoplasias Pulmonares/diagnóstico por imagen , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X
3.
IEEE J Biomed Health Inform ; 24(12): 3564-3575, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32966223

RESUMEN

To slow down the spread of COVID-19, governments worldwide are trying to identify infected people, and contain the virus by enforcing isolation, and quarantine. However, it is difficult to trace people who came into contact with an infected person, which causes widespread community transmission, and mass infection. To address this problem, we develop an e-government Privacy-Preserving Mobile, and Fog computing framework entitled PPMF that can trace infected, and suspected cases nationwide. We use personal mobile devices with contact tracing app, and two types of stationary fog nodes, named Automatic Risk Checkers (ARC), and Suspected User Data Uploader Node (SUDUN), to trace community transmission alongside maintaining user data privacy. Each user's mobile device receives a Unique Encrypted Reference Code (UERC) when registering on the central application. The mobile device, and the central application both generate Rotational Unique Encrypted Reference Code (RUERC), which broadcasted using the Bluetooth Low Energy (BLE) technology. The ARCs are placed at the entry points of buildings, which can immediately detect if there are positive or suspected cases nearby. If any confirmed case is found, the ARCs broadcast pre-cautionary messages to nearby people without revealing the identity of the infected person. The SUDUNs are placed at the health centers that report test results to the central cloud application. The reported data is later used to map between infected, and suspected cases. Therefore, using our proposed PPMF framework, governments can let organizations continue their economic activities without complete lockdown.


Asunto(s)
COVID-19/transmisión , Privacidad , COVID-19/virología , Humanos , Aplicaciones Móviles , SARS-CoV-2/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA