Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 277(Pt 2): 134216, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39069058

RESUMEN

Lactobacillus delbrueckii CIDCA 133 is a promising health-promoting bacterium shown to alleviate intestinal inflammation. However, the specific bacterial components responsible for these effects remain largely unknown. Here, we demonstrated that consuming extractable proteins from the CIDCA 133 strain effectively relieved acute ulcerative colitis in mice. This postbiotic protein fraction reduced the disease activity index and prevented colon shortening in mice. Furthermore, histological analysis revealed colitis prevention with reduced inflammatory cell infiltration into the colon mucosa. Postbiotic consumption also induced an immunomodulatory profile in colitic mice, as evidenced by both mRNA transcript levels (Tlr2, Nfkb1, Nlpr3, Tnf, and Il6) and cytokines concentration (IL1ß, TGFß, and IL10). Additionally, it enhanced the levels of secretory IgA, upregulated the transcript levels of tight junction proteins (Hp and F11r), and improved paracellular intestinal permeability. More interestingly, the consumption of postbiotic proteins modulated the gut microbiota (Bacteroides, Arkkemansia, Dorea, and Oscillospira). Pearson correlation analysis indicated that IL10 and IL1ß levels were positively associated with Bacteroides and Arkkemansia_Lactobacillus abundance. Our study reveals that CIDCA 133-derived proteins possess anti-inflammatory properties in colonic inflammation.


Asunto(s)
Antiinflamatorios , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Lactobacillus delbrueckii , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Microbioma Gastrointestinal/efectos de los fármacos , Citocinas/metabolismo , Proteínas Bacterianas/farmacología , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/patología , Probióticos/farmacología , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Colon/patología , Colon/microbiología , Colon/metabolismo , Masculino
2.
World J Microbiol Biotechnol ; 40(8): 235, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850338

RESUMEN

Lactobacillus delbrueckii, a widely used lactic acid bacterium in the food industry, has been studied for its probiotic properties and reservoir of antibiotic-resistant genes, raising safety concerns for probiotic formulations and fermented products. This review consolidates findings from 60 articles published between 2012 and 2023, focusing on the global antibiotic resistance profile and associated genetic factors in L. delbrueckii strains. Resistance to aminoglycosides, particularly streptomycin, kanamycin, and gentamicin, as well as resistance to glycopeptides (vancomycin), fluoroquinolones (ciprofloxacin), and tetracyclines was predominant. Notably, although resistance genes have been identified, they have not been linked to mobile genetic elements, reducing the risk of dissemination. However, a significant limitation is the insufficient exploration of responsible genes or mobile elements in 80% of studies, hindering safety assessments. Additionally, most articles originated from Asian and Middle Eastern countries, with strains often isolated from fermented dairy foods. Therefore, these findings underscore the necessity for comprehensive analyses of new strains of L. delbrueckii for potential industrial and biotherapeutic applications and in combating the rise of antibiotic-resistant pathogens.


Asunto(s)
Antibacterianos , Lactobacillus delbrueckii , Probióticos , Probióticos/farmacología , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/efectos de los fármacos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Industria de Alimentos , Microbiología de Alimentos , Alimentos Fermentados/microbiología
3.
Food Res Int ; 186: 114322, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729712

RESUMEN

Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.


Asunto(s)
Colitis , Productos Lácteos Cultivados , Sulfato de Dextran , Microbioma Gastrointestinal , Lactobacillus delbrueckii , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Colitis/microbiología , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/tratamiento farmacológico , Lactobacillus delbrueckii/metabolismo , Productos Lácteos Cultivados/microbiología , Ratones , Probióticos/uso terapéutico , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Inflamación , Colon/microbiología , Colon/metabolismo , Lactobacillus
4.
Front Microbiol ; 15: 1309160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680913

RESUMEN

Introduction and objective: p62 is a human multifunctional adaptor protein involved in key cellular processes such as tissue homeostasis, inflammation, and cancer. It acts as a negative regulator of inflammasome complexes. It may thus be considered a good candidate for therapeutic use in inflammatory bowel diseases (IBD), such as colitis. Probiotics, including recombinant probiotic strains producing or delivering therapeutic biomolecules to the host mucosal surfaces, could help prevent and mitigate chronic intestinal inflammation. The objective of the present study was to combine the intrinsic immunomodulatory properties of the probiotic Lactococcus lactis NCDO2118 with its ability to deliver health-promoting molecules to enhance its protective and preventive effects in the context of ulcerative colitis (UC). Material and methods: This study was realized in vivo in which mice were supplemented with the recombinant strain. The intestinal barrier function was analyzed by monitoring permeability, secretory IgA total levels, mucin expression, and tight junction genes. Its integrity was evaluated by histological analyses. Regarding inflammation, colonic cytokine levels, myeloperoxidase (MPO), and expression of key genes were monitored. The intestinal microbiota composition was investigated using 16S rRNA Gene Sequencing. Results and discussion: No protective effect of L. lactis NCDO2118 pExu:p62 was observed regarding mice clinical parameters compared to the L. lactis NCDO2118 pExu: empty. However, the recombinant strain, expressing p62, increased the goblet cell counts, upregulated Muc2 gene expression in the colon, and downregulated pro-inflammatory cytokines Tnf and Ifng when compared to L. lactis NCDO2118 pExu: empty and inflamed groups. This recombinant strain also decreased colonic MPO activity. No difference in the intestinal microbiota was observed between all treatments. Altogether, our results show that recombinant L. lactis NCDO2118 delivering p62 protein protected the intestinal mucosa and mitigated inflammatory damages caused by dextran sodium sulfate (DSS). We thus suggest that p62 may constitute part of a therapeutic approach targeting inflammation.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38539008

RESUMEN

This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.

6.
Probiotics Antimicrob Proteins ; 16(2): 352-366, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36746838

RESUMEN

Target delivery of therapeutic agents with anti-inflammatory properties using probiotics as delivery and recombinant protein expression vehicles is a promising approach for the prevention and treatment of many diseases, such as cancer and intestinal immune disorders. Lactococcus lactis, a Lactic Acid Bacteria (LAB) widely used in the dairy industry, is one of the most important microorganisms with GRAS status for human consumption, for which biotechnological tools have already been developed to express and deliver recombinant biomolecules with anti-inflammatory properties. Cytokines, for  example, are immune system communication molecules present at virtually all levels of the immune response. They are essential in cellular and humoral processes, such as hampering inflammation or adjuvating in the adaptive immune response, making them good candidates for therapeutic approaches. This review discusses the advances in the development of new therapies and prophylactic approaches using LAB to deliver/express cytokines for the treatment of inflammatory and autoimmune diseases in the future.


Asunto(s)
Enfermedades Autoinmunes , Lactococcus lactis , Humanos , Lactococcus lactis/metabolismo , Interleucinas/metabolismo , Citocinas/metabolismo , Enfermedades Autoinmunes/tratamiento farmacológico , Antiinflamatorios
7.
World J Microbiol Biotechnol ; 39(9): 235, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37365380

RESUMEN

Intestinal mucositis is a commonly reported side effect in oncology patients undergoing chemotherapy and radiotherapy. Probiotics, prebiotics, and synbiotics have been investigated as alternative therapeutic approaches against intestinal mucositis due to their well-known anti-inflammatory properties and health benefits to the host. Previous studies showed that the potential probiotic Lactobacillus delbrueckii CIDCA 133 and the prebiotic Fructooligosaccharides (FOS) alleviated the 5-Fluorouracil (5-FU) chemotherapy-induced intestinal mucosa damage. Based on these previous beneficial effects, this work evaluated the anti-inflammatory property of the synbiotic formulation containing L. delbrueckii CIDCA 133 and FOS in mice intestinal mucosa inflammation induced by 5-FU. This work showed that the synbiotic formulation was able to modulate inflammatory parameters, including reduction of cellular inflammatory infiltration, gene expression downregulation of Tlr2, Nfkb1, and Tnf, and upregulation of the immunoregulatory Il10 cytokine, thus protecting the intestinal mucosa from epithelial damage caused by the 5-FU. The synbiotic also improved the epithelial barrier function by upregulating mRNA transcript levels of the short chain fatty acid (SCFA)-associated GPR43 receptor and the occludin tight junction protein, with the subsequent reduction of paracellular intestinal permeability. The data obtained showed that this synbiotic formulation could be a promising adjuvant treatment to be explored against inflammatory damage caused by 5-FU chemotherapy.


Asunto(s)
Antineoplásicos , Lactobacillus delbrueckii , Mucositis , Probióticos , Simbióticos , Ratones , Animales , Mucositis/inducido químicamente , Mucositis/tratamiento farmacológico , Mucositis/prevención & control , Probióticos/farmacología , Mucosa Intestinal , Prebióticos/efectos adversos , Fluorouracilo/efectos adversos , Antineoplásicos/farmacología
8.
Front Microbiol ; 14: 1157544, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138633

RESUMEN

Mucositis is an inflammation of the gastrointestinal mucosa that debilitate the quality of life of patients undergoing chemotherapy treatments. In this context, antineoplastic drugs, such as 5-fluorouracil, provokes ulcerations in the intestinal mucosa that lead to the secretion of pro-inflammatory cytokines by activating the NF-κB pathway. Alternative approaches to treat the disease using probiotic strains show promising results, and thereafter, treatments that target the site of inflammation could be further explored. Recently, studies reported that the protein GDF11 has an anti-inflammatory role in several diseases, including in vitro and in vivo results in different experimental models. Hence, this study evaluated the anti-inflammatory effect of GDF11 delivered by Lactococcus lactis strains NCDO2118 and MG1363 in a murine model of intestinal mucositis induced by 5-FU. Our results showed that mice treated with the recombinant lactococci strains presented improved histopathological scores of intestinal damage and a reduction of goblet cell degeneration in the mucosa. It was also observed a significant reduction of neutrophil infiltration in the tissue in comparison to positive control group. Moreover, we observed immunomodulation of inflammatory markers Nfkb1, Nlrp3, Tnf, and upregulation of Il10 in mRNA expression levels in groups treated with recombinant strains that help to partially explain the ameliorative effect in the mucosa. Therefore, the results found in this study suggest that the use of recombinant L. lactis (pExu:gdf11) could offer a potential gene therapy for intestinal mucositis induced by 5-FU.

9.
Probiotics Antimicrob Proteins ; 15(1): 160-174, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36028786

RESUMEN

Beneficial effects of Lactiplantibacillus plantarum strains have been widely reported. Knowing that the effects of probiotic bacteria are strain-dependent, this study aimed to characterize the probiotic properties and investigate the gastrointestinal protective effects of nine novel L. plantarum strains isolated from Bahia, Brazil. The probiotic functionality was first evaluated in vitro by characterizing bile salt and acidic tolerance, antibacterial activity, and adhesion to Caco-2 cells. Antibiotic resistance profile, mucin degradation, and hemolytic activity assays were also performed to evaluate safety features. In vivo analyses were conducted to investigate the anti-inflammatory effects of the strains on a mouse model of 5-Fluorouracil-induced mucositis. Our results suggest that the used L. plantarum strains have good tolerance to bile salts and low pH and can inhibit commonly gastrointestinal pathogens. Lp2 and Lpl1 strains also exhibited high adhesion rates to Caco-2 cells (13.64 and 9.05%, respectively). Phenotypical resistance to aminoglycosides, vancomycin, and tetracycline was observed for most strains. No strain showed hemolytic or mucolytic activity. Seven strains had a protective effect against histopathological and inflammatory damage induced by 5-FU. Gene expression analysis of inflammatory markers showed that five strains upregulated interleukin 10 (Il10), while four downregulated both interleukin 6 (Il6) and interleukin 1b (Il1b). Additionally, all strains reduced eosinophilic and neutrophilic infiltration; however, they could not prevent weight loss or reduced liquid/ food intake. Altogether, our study suggests these Brazilian L. plantarum strains present good probiotic characteristics and safety levels for future applications and can be therapeutically adjuvant alternatives to prevent/treat intestinal mucositis.


Asunto(s)
Lactobacillus plantarum , Mucositis , Probióticos , Animales , Humanos , Ratones , Antibacterianos/metabolismo , Brasil , Células CACO-2 , Fluorouracilo , Lactobacillaceae , Lactobacillus plantarum/metabolismo , Probióticos/farmacología
10.
Front Microbiol ; 13: 858036, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558121

RESUMEN

Intestinal mucositis promoted by the use of anticancer drugs is characterized by ulcerative inflammation of the intestinal mucosa, a debilitating side effect in cancer patients undergoing treatment. Probiotics are a potential therapeutic option to alleviate intestinal mucositis due to their effects on epithelial barrier integrity and anti-inflammatory modulation. This study investigated the health-promoting impact of Lactobacillus delbrueckii CIDCA 133 in modulating inflammatory and epithelial barrier markers to protect the intestinal mucosa from 5-fluorouracil-induced epithelial damage. L. delbrueckii CIDCA 133 consumption ameliorated small intestine shortening, inflammatory cell infiltration, intestinal permeability, villus atrophy, and goblet cell count, improving the intestinal mucosa architecture and its function in treated mice. Upregulation of Muc2, Cldn1, Hp, F11r, and Il10, and downregulation of markers involved in NF-κB signaling pathway activation (Tlr2, Tlr4, Nfkb1, Il6, and Il1b) were observed at the mRNA level. This work suggests a beneficial role of L. delbrueckii strain CIDCA 133 on intestinal damage induced by 5-FU chemotherapy through modulation of inflammatory pathways and improvement of epithelial barrier function.

11.
Probiotics Antimicrob Proteins ; 14(5): 816-829, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34403080

RESUMEN

Lactobacillus delbrueckii subsp. lactis CIDCA is a new potential probiotic strain whose molecular basis attributed to the host's benefit has been reported. This study investigated the safety aspects of Lactobacillus delbrueckii subsp. lactis CIDCA 133 based on whole-genome sequence and phenotypic analysis to avoid future questions about the harmful effects of this strain consumption. Genomic analysis showed that L. delbrueckii subsp. lactis CIDCA 133 harbors virulence, harmful metabolites, and antimicrobial resistance-associated genes. However, none of these genetic elements is flanked or located within prophage regions and plasmid sequence. At a phenotypic level, it was observed L. delbrueckii subsp. lactis CIDCA 133 antimicrobial resistance to aminoglycosides streptomycin and gentamicin antibiotics, but no hemolytic and mucin degradation activity was exhibited by strain. Furthermore, no adverse effects were observed regarding mice clinical and histopathological analysis after the strain consumption (5 × 107 CFU/mL). Overall, these findings reveal the safety of Lactobacillus delbrueckii subsp. lactis CIDCA 133 for consumption and future probiotic applications.


Asunto(s)
Lactobacillus delbrueckii , Probióticos , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Lactobacillus/genética , Lactobacillus delbrueckii/genética , Ratones , Probióticos/farmacología
12.
Microorganisms ; 9(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466324

RESUMEN

5-Fluorouracil (5-FU) is an antineoplastic drug that causes, as a side effect, intestinal mucositis, acute inflammation in the small bowel. The Heat Shock Protein (Hsp) are highly expressed in inflammatory conditions, developing an important role in immune modulation. Thus, they are potential candidates for the treatment of inflammatory diseases. In the mucositis mouse model, the present study aimed to evaluate the beneficial effect of oral administration of milk fermented by Lactobacillus delbrueckii CIDCA 133 (pExu:hsp65), a recombinant strain. This approach showed increased levels of sIgA in the intestinal fluid, reducing inflammatory infiltrate and intestinal permeability. Additionally, the histological score was improved. Protection was associated with a reduction in the gene expression of pro-inflammatory cytokines such as Tnf, Il6, Il12, and Il1b, and an increase in Il10, Muc2, and claudin 1 (Cldn1) and 2 (Cldn2) gene expression in ileum tissue. These findings are corroborated with the increased number of goblet cells, the electronic microscopy images, and the reduction of intestinal permeability. The administration of milk fermented by this recombinant probiotic strain was also able to reverse the high levels of gene expression of Tlrs caused by the 5-FU. Thus, the rCIDCA 133:Hsp65 strain was revealed to be a promising preventive strategy for small bowel inflammation.

13.
Front Microbiol ; 11: 544490, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042054

RESUMEN

Intestinal mucositis, a cytotoxic side effect of the antineoplastic drug 5-fluorouracil (5-FU), is characterized by ulceration, inflammation, diarrhea, and intense abdominal pain, making it an important issue for clinical medicine. Given the seriousness of the problem, therapeutic alternatives have been sought as a means to ameliorate, prevent, and treat this condition. Among the alternatives available to address this side effect of treatment with 5-FU, the most promising has been the use of probiotics, prebiotics, synbiotics, and paraprobiotics. This review addresses the administration of these "biotics" as a therapeutic alternative for intestinal mucositis caused by 5-FU. It describes the effects and benefits related to their use as well as their potential for patient care.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...