Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Front Fungal Biol ; 5: 1418145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309730

RESUMEN

Over a billion years of fungal evolution has enabled representatives of this kingdom to populate almost all parts of planet Earth and to adapt to some of its most uninhabitable environments including extremes of temperature, salinity, pH, water, light, or other sources of radiation. Cryomyces antarcticus is an endolithic fungus that inhabits rock outcrops in Antarctica. It survives extremes of cold, humidity and solar radiation in one of the least habitable environments on Earth. This fungus is unusual because it produces heavily melanized, meristematic growth and is thought to be haploid and asexual. Due to its growth in the most extreme environment, it has been suggested as an organism that could survive on Mars. However, the mechanisms it uses to achieve its extremophilic nature are not known. Comparative genomics can provide clues to the processes underlying biological diversity, evolution, and adaptation. This effort has been greatly facilitated by the 1000 Fungal Genomes project and the JGI MycoCosm portal where sequenced genomes have been assembled into phylogenetic and ecological groups representing different projects, lifestyles, ecologies, and evolutionary histories. Comparative genomics within and between these groups provides insights into fungal adaptations, for example to extreme environmental conditions. Here, we analyze two Cryomyces genomes in the context of additional psychrophilic fungi, as well as non-psychrophilic fungi with diverse lifestyles selected from the MycoCosm database. This analysis identifies families of genes that are expanded and contracted in Cryomyces and other psychrophiles and may explain their extremophilic lifestyle. Higher GC contents of genes and of bases in the third positions of codons may help to stabilize DNA under extreme conditions. Numerous smaller contigs in C. antarcticus suggest the presence of an alternative haplotype that could indicate the sequenced isolate is diploid or dikaryotic. These analyses provide a first step to unraveling the secrets of the extreme lifestyle of C. antarcticus.

2.
Commun Biol ; 7(1): 1084, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232195

RESUMEN

Marine microbes that have for eons been adapted to stable salinity regimes are confronted with sudden decreases in salinity in the Arctic Ocean. The episodic freshening is increasing due to climate change with melting multi-year sea-ice and glaciers, greater inflows from rivers, and increased precipitation. To investigate algal responses to lowered salinity, we analyzed the responses and acclimatation over 24 h in a non-model Arctic marine alga (pelagophyte CCMP2097) following transfer to realistic lower salinities. Using RNA-seq transcriptomics, here we show rapid differentially expressed genes related to stress oxidative responses, proteins involved in the photosystem and circadian clock, and those affecting lipids and inorganic ions. After 24 h the pelagophyte adjusted to the lower salinity seen in the overexpression of genes associated with freezing resistance, cold adaptation, and salt tolerance. Overall, a suite of ancient widespread pathways is recruited enabling the species to adjust to the stress of rapid salinity change.


Asunto(s)
Microalgas , Salinidad , Microalgas/genética , Microalgas/metabolismo , Regiones Árticas , Perfilación de la Expresión Génica , Estrés Fisiológico/genética , Transcriptoma , Tolerancia a la Sal/genética , Cambio Climático
3.
Fungal Genet Biol ; 175: 103925, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244012

RESUMEN

Phyllosticta citricarpa is an important citrus-pathogen and a quarantine organism in the European Union. Its recently described relative, P. paracitricarpa, is very closely related and not listed as a quarantine organism. P. paracitricarpa is very difficult to distinguish from P. citricarpa, since its morphological features overlap and the barcoding gene sequences that were originally used to delimit them as distinct species have a low number of species-specific polymorphisms that have subsequently been shown to overlap between the two clades. Therefore, we performed extensive genomic analyses to determine whether the genetic variation between P. citricarpa and P. paracitricarpa strains should be considered to represent infraspecific variation within P. citricarpa, or whether it is indicative of distinct species. Using a phylogenomic analysis with 3,000 single copy ortholog genes and whole-genome comparisons, we determined that the variation between P. citricarpa and P. paracitricarpa can be considered as infraspecies variation within P. citricarpa. We also determined the level of variation in mitochondrial assemblies of several Phyllosticta species and concluded there are only minimal differences between the assemblies of P. citricarpa and P. paracitricarpa. Thus, using several orthogonal approaches, we here demonstrate that variation within the nuclear and mitochondrial genomes of other Phyllosticta species is larger than variation between genomes obtained from P. citricarpa and P. paracitricarpa strains. Thus, P. citricarpa and P. paracitricarpa should be considered as conspecific.

4.
J Fungi (Basel) ; 10(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39057392

RESUMEN

Aspergillus terreus has attracted interest due to its application in industrial biotechnology, particularly for the production of itaconic acid and bioactive secondary metabolites. As related species also seem to possess a prosperous secondary metabolism, they are of high interest for genome mining and exploitation. Here, we present draft genome sequences for six species from Aspergillus section Terrei and one species from Aspergillus section Nidulantes. Whole-genome phylogeny confirmed that section Terrei is monophyletic. Genome analyses identified between 70 and 108 key secondary metabolism genes in each of the genomes of section Terrei, the highest rate found in the genus Aspergillus so far. The respective enzymes fall into 167 distinct families with most of them corresponding to potentially unique compounds or compound families. Moreover, 53% of the families were only found in a single species, which supports the suitability of species from section Terrei for further genome mining. Intriguingly, this analysis, combined with heterologous gene expression and metabolite identification, suggested that species from section Terrei use a strategy for UV protection different to other species from the genus Aspergillus. Section Terrei contains a complete plant polysaccharide degrading potential and an even higher cellulolytic potential than other Aspergilli, possibly facilitating additional applications for these species in biotechnology.

5.
G3 (Bethesda) ; 14(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39001865

RESUMEN

Zinc (Zn) is a major soil contaminant and high Zn levels can disrupt growth, survival, and reproduction of fungi. Some fungal species evolved Zn tolerance through cell processes mitigating Zn toxicity, although the genes and detailed mechanisms underlying mycorrhizal fungal Zn tolerance remain unexplored. To fill this gap in knowledge, we investigated the gene expression of Zn tolerance in the ectomycorrhizal fungus Suillus luteus. We found that Zn tolerance in this species is mainly a constitutive trait that can also be environmentally dependent. Zinc tolerance in S. luteus is associated with differences in the expression of genes involved in metal exclusion and immobilization, as well as recognition and mitigation of metal-induced oxidative stress. Differentially expressed genes were predicted to be involved in transmembrane transport, metal chelation, oxidoreductase activity, and signal transduction. Some of these genes were previously reported as candidates for S. luteus Zn tolerance, while others are reported here for the first time. Our results contribute to understanding the mechanisms of fungal metal tolerance and pave the way for further research on the role of fungal metal tolerance in mycorrhizal associations.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Micorrizas , Transcriptoma , Zinc , Zinc/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Basidiomycota/genética , Basidiomycota/efectos de los fármacos , Estrés Oxidativo
6.
Cell Genom ; 4(7): 100586, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38942024

RESUMEN

Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.


Asunto(s)
Agaricales , Genoma Fúngico , Genoma Fúngico/genética , Agaricales/genética , Filogenia , Elementos Transponibles de ADN/genética , Evolución Molecular , Transferencia de Gen Horizontal , Plantas/microbiología , Plantas/genética
7.
PeerJ ; 12: e17323, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726377

RESUMEN

The rice receptor kinase XA21 confers broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial blight disease. To investigate the relationship between the expression level of XA21 and resulting resistance, we generated independent HA-XA21 transgenic rice lines accumulating the XA21 immune receptor fused with an HA epitope tag. Whole-genome sequence analysis identified the T-DNA insertion sites in sixteen independent T0 events. Through quantification of the HA-XA21 protein and assessment of the resistance to Xoo strain PXO99 in six independent transgenic lines, we observed that XA21-mediated resistance is dose dependent. In contrast, based on the four agronomic traits quantified in these experiments, yield is unlikely to be affected by the expression level of HA-XA21. These findings extend our knowledge of XA21-mediated defense and contribute to the growing number of well-defined genomic landing pads in the rice genome that can be targeted for gene insertion without compromising yield.


Asunto(s)
Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Xanthomonas , Xanthomonas/genética , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas
8.
Quant Plant Biol ; 5: e5, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774130

RESUMEN

Plant growth requires the integration of internal and external cues, perceived and transduced into a developmental programme of cell division, elongation and wall thickening. Mechanical forces contribute to this regulation, and thigmomorphogenesis typically includes reducing stem height, increasing stem diameter, and a canonical transcriptomic response. We present data on a bZIP transcription factor involved in this process in grasses. Brachypodium distachyon SECONDARY WALL INTERACTING bZIP (SWIZ) protein translocated into the nucleus following mechanostimulation. Classical touch-responsive genes were upregulated in B. distachyon roots following touch, including significant induction of the glycoside hydrolase 17 family, which may be unique to grass thigmomorphogenesis. SWIZ protein binding to an E-box variant in exons and introns was associated with immediate activation followed by repression of gene expression. SWIZ overexpression resulted in plants with reduced stem and root elongation. These data further define plant touch-responsive transcriptomics and physiology, offering insights into grass mechanotranduction dynamics.

10.
Nat Genet ; 56(5): 1018-1031, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693345

RESUMEN

Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.


Asunto(s)
Embryophyta , Evolución Molecular , Filogenia , Transducción de Señal , Transducción de Señal/genética , Embryophyta/genética , Redes Reguladoras de Genes , Genoma/genética , Genoma de Planta
11.
Environ Microbiol ; 26(5): e16629, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38695111

RESUMEN

Horizontal genetic transfer (HGT) is a common phenomenon in eukaryotic genomes. However, the mechanisms by which HGT-derived genes persist and integrate into other pathways remain unclear. This topic is of significant interest because, over time, the stressors that initially favoured the fixation of HGT may diminish or disappear. Despite this, the foreign genes may continue to exist if they become part of a broader stress response or other pathways. The conventional model suggests that the acquisition of HGT equates to adaptation. However, this model may evolve into more complex interactions between gene products, a concept we refer to as the 'Integrated HGT Model' (IHM). To explore this concept further, we studied specialized HGT-derived genes that encode heavy metal detoxification functions. The recruitment of these genes into other pathways could provide clear examples of IHM. In our study, we exposed two anciently diverged species of polyextremophilic red algae from the Galdieria genus to arsenic and mercury stress in laboratory cultures. We then analysed the transcriptome data using differential and coexpression analysis. Our findings revealed that mercury detoxification follows a 'one gene-one function' model, resulting in an indivisible response. In contrast, the arsH gene in the arsenite response pathway demonstrated a complex pattern of duplication, divergence and potential neofunctionalization, consistent with the IHM. Our research sheds light on the fate and integration of ancient HGTs, providing a novel perspective on the ecology of extremophiles.


Asunto(s)
Arsénico , Extremófilos , Transferencia de Gen Horizontal , Rhodophyta , Rhodophyta/genética , Extremófilos/genética , Arsénico/metabolismo , Mercurio/metabolismo , Estrés Fisiológico/genética , Inactivación Metabólica/genética , Evolución Molecular
12.
mBio ; 15(6): e0058224, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38651867

RESUMEN

The impacts of microsporidia on host individuals are frequently subtle and can be context dependent. A key example of the latter comes from a recently discovered microsporidian symbiont of Daphnia, the net impact of which was found to shift from negative to positive based on environmental context. Given this, we hypothesized low baseline virulence of the microsporidian; here, we investigated the impact of infection on hosts in controlled conditions and the absence of other stressors. We also investigated its phylogenetic position, ecology, and host range. The genetic data indicate that the symbiont is Ordospora pajunii, a newly described microsporidian parasite of Daphnia. We show that O. pajunii infection damages the gut, causing infected epithelial cells to lose microvilli and then rupture. The prevalence of this microsporidian could be high (up to 100% in the lab and 77% of adults in the field). Its overall virulence was low in most cases, but some genotypes suffered reduced survival and/or reproduction. Susceptibility and virulence were strongly host-genotype dependent. We found that North American O. pajunii were able to infect multiple Daphnia species, including the European species Daphnia longispina, as well as Ceriodaphnia spp. Given the low, often undetectable virulence of this microsporidian and potentially far-reaching consequences of infections for the host when interacting with other pathogens or food, this Daphnia-O. pajunii symbiosis emerges as a valuable system for studying the mechanisms of context-dependent shifts between mutualism and parasitism, as well as for understanding how symbionts might alter host interactions with resources. IMPORTANCE: The net outcome of symbiosis depends on the costs and benefits to each partner. Those can be context dependent, driving the potential for an interaction to change between parasitism and mutualism. Understanding the baseline fitness impact in an interaction can help us understand those shifts; for an organism that is generally parasitic, it should be easier for it to become a mutualist if its baseline virulence is relatively low. Recently, a microsporidian was found to become beneficial to its Daphnia hosts in certain ecological contexts, but little was known about the symbiont (including its species identity). Here, we identify it as the microsporidium Ordospora pajunii. Despite the parasitic nature of microsporidia, we found O. pajunii to be, at most, mildly virulent; this helps explain why it can shift toward mutualism in certain ecological contexts and helps establish O. pajunii is a valuable model for investigating shifts along the mutualism-parasitism continuum.


Asunto(s)
Daphnia , Especificidad del Huésped , Filogenia , Simbiosis , Animales , Daphnia/microbiología , Virulencia , Microsporidios/genética , Microsporidios/patogenicidad , Microsporidios/fisiología , Microsporidios/clasificación , Microsporidia no Clasificados/genética , Microsporidia no Clasificados/patogenicidad , Microsporidia no Clasificados/clasificación , Microsporidia no Clasificados/fisiología
13.
Commun Biol ; 7(1): 312, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594478

RESUMEN

Geothermal springs house unicellular red algae in the class Cyanidiophyceae that dominate the microbial biomass at these sites. Little is known about host-virus interactions in these environments. We analyzed the virus community associated with red algal mats in three neighboring habitats (creek, endolithic, soil) at Lemonade Creek, Yellowstone National Park (YNP), USA. We find that despite proximity, each habitat houses a unique collection of viruses, with the giant viruses, Megaviricetes, dominant in all three. The early branching phylogenetic position of genes encoded on metagenome assembled virus genomes (vMAGs) suggests that the YNP lineages are of ancient origin and not due to multiple invasions from mesophilic habitats. The existence of genomic footprints of adaptation to thermophily in the vMAGs is consistent with this idea. The Cyanidiophyceae at geothermal sites originated ca. 1.5 Bya and are therefore relevant to understanding biotic interactions on the early Earth.


Asunto(s)
Manantiales de Aguas Termales , Rhodophyta , Filogenia , Parques Recreativos , Ecosistema , Biomasa , Rhodophyta/genética
14.
Genome Res ; 34(2): 286-299, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38479835

RESUMEN

Genetic diversity is critical to crop breeding and improvement, and dissection of the genomic variation underlying agronomic traits can both assist breeding and give insight into basic biological mechanisms. Although recent genome analyses in plants reveal many structural variants (SVs), most current studies of crop genetic variation are dominated by single-nucleotide polymorphisms (SNPs). The extent of the impact of SVs on global trait variation, as well as their utility in genome-wide selection, is not yet understood. In this study, we built an SV data set based on whole-genome resequencing of diverse sorghum lines (n = 363), validated the correlation of photoperiod sensitivity and variety type, and identified SV hotspots underlying the divergent evolution of cellulosic and sweet sorghum. In addition, we showed the complementary contribution of SVs for heritability of traits related to sorghum adaptation. Importantly, inclusion of SV polymorphisms in association studies revealed genotype-phenotype associations not observed with SNPs alone. Three-way genome-wide association studies (GWAS) based on whole-genome SNP, SV, and integrated SNP + SV data sets showed substantial associations between SVs and sorghum traits. The addition of SVs to GWAS substantially increased heritability estimates for some traits, indicating their important contribution to functional allelic variation at the genome level. Our discovery of the widespread impacts of SVs on heritable gene expression variation could render a plausible mechanism for their disproportionate impact on phenotypic variation. This study expands our knowledge of SVs and emphasizes the extensive impacts of SVs on sorghum.


Asunto(s)
Variación Genética , Sorghum , Sorghum/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Fenotipo , Grano Comestible/genética , Polimorfismo de Nucleótido Simple
15.
J Genomics ; 12: 44-46, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434106

RESUMEN

Favolaschia claudopus, a wood-inhabiting basidiomycete of the Mycenaceae family, is considered an invasive species that has recently spread from Oceania to Europe. The CIRM-BRFM 2984 strain of this fungus was originally isolated from a basidiome collected from the fallen limb of a decayed oak tree in Southwest France. The genome sequence of this strain shared characteristics with other Mycenaceae species, including a large genome size and enriched content of protein-coding genes. The genome sequence provided here will facilitate further investigation on the factors that contribute to the successful global dissemination of F. claudopus.

16.
New Phytol ; 242(2): 658-674, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38375883

RESUMEN

The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.


Asunto(s)
Ciclopentanos , Laccaria , Micorrizas , Oxilipinas , Populus , Micorrizas/genética , Populus/metabolismo , Raíces de Plantas/metabolismo , Simbiosis/genética , Laccaria/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Monoterpenos/metabolismo
17.
Plant J ; 118(2): 304-323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38265362

RESUMEN

The model moss species Physcomitrium patens has long been used for studying divergence of land plants spanning from bryophytes to angiosperms. In addition to its phylogenetic relationships, the limited number of differential tissues, and comparable morphology to the earliest embryophytes provide a system to represent basic plant architecture. Based on plant-fungal interactions today, it is hypothesized these kingdoms have a long-standing relationship, predating plant terrestrialization. Mortierellaceae have origins diverging from other land fungi paralleling bryophyte divergence, are related to arbuscular mycorrhizal fungi but are free-living, observed to interact with plants, and can be found in moss microbiomes globally. Due to their parallel origins, we assess here how two Mortierellaceae species, Linnemannia elongata and Benniella erionia, interact with P. patens in coculture. We also assess how Mollicute-related or Burkholderia-related endobacterial symbionts (MRE or BRE) of these fungi impact plant response. Coculture interactions are investigated through high-throughput phenomics, microscopy, RNA-sequencing, differential expression profiling, gene ontology enrichment, and comparisons among 99 other P. patens transcriptomic studies. Here we present new high-throughput approaches for measuring P. patens growth, identify novel expression of over 800 genes that are not expressed on traditional agar media, identify subtle interactions between P. patens and Mortierellaceae, and observe changes to plant-fungal interactions dependent on whether MRE or BRE are present. Our study provides insights into how plants and fungal partners may have interacted based on their communications observed today as well as identifying L. elongata and B. erionia as modern fungal endophytes with P. patens.


Asunto(s)
Briófitas , Bryopsida , Micorrizas , Filogenia , Endófitos/metabolismo , Análisis Multinivel , Proteínas de Plantas/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Briófitas/genética , Briófitas/metabolismo , Micorrizas/metabolismo
18.
Proc Natl Acad Sci U S A ; 121(4): e2312607121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38236735

RESUMEN

Homosporous lycophytes (Lycopodiaceae) are a deeply diverged lineage in the plant tree of life, having split from heterosporous lycophytes (Selaginella and Isoetes) ~400 Mya. Compared to the heterosporous lineage, Lycopodiaceae has markedly larger genome sizes and remains the last major plant clade for which no chromosome-level assembly has been available. Here, we present chromosomal genome assemblies for two homosporous lycophyte species, the allotetraploid Huperzia asiatica and the diploid Diphasiastrum complanatum. Remarkably, despite that the two species diverged ~350 Mya, around 30% of the genes are still in syntenic blocks. Furthermore, both genomes had undergone independent whole genome duplications, and the resulting intragenomic syntenies have likewise been preserved relatively well. Such slow genome evolution over deep time is in stark contrast to heterosporous lycophytes and is correlated with a decelerated rate of nucleotide substitution. Together, the genomes of H. asiatica and D. complanatum not only fill a crucial gap in the plant genomic landscape but also highlight a potentially meaningful genomic contrast between homosporous and heterosporous species.


Asunto(s)
Genoma de Planta , Genómica , Genoma de Planta/genética , Tamaño del Genoma , Filogenia , Evolución Molecular
19.
Nat Plants ; 10(2): 240-255, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38278954

RESUMEN

We present chromosome-level genome assemblies from representative species of three independently evolved seagrass lineages: Posidonia oceanica, Cymodocea nodosa, Thalassia testudinum and Zostera marina. We also include a draft genome of Potamogeton acutifolius, belonging to a freshwater sister lineage to Zosteraceae. All seagrass species share an ancient whole-genome triplication, while additional whole-genome duplications were uncovered for C. nodosa, Z. marina and P. acutifolius. Comparative analysis of selected gene families suggests that the transition from submerged-freshwater to submerged-marine environments mainly involved fine-tuning of multiple processes (such as osmoregulation, salinity, light capture, carbon acquisition and temperature) that all had to happen in parallel, probably explaining why adaptation to a marine lifestyle has been exceedingly rare. Major gene losses related to stomata, volatiles, defence and lignification are probably a consequence of the return to the sea rather than the cause of it. These new genomes will accelerate functional studies and solutions, as continuing losses of the 'savannahs of the sea' are of major concern in times of climate change and loss of biodiversity.


Asunto(s)
Alismatales , Zosteraceae , Alismatales/genética , Zosteraceae/genética , Ecosistema
20.
Ecotoxicol Environ Saf ; 270: 115808, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38198896

RESUMEN

Despite various plans to rationalize antibiotic use, antibiotic resistance in environmental bacteria is increasing due to the accumulation of antibiotic residues in the environment. This study aimed to test the ability of basidiomycete fungal strains to biotransform the antibiotic levofloxacin, a widely-used third-generation broad-spectrum fluoroquinolone, and to propose enzyme targets potentially involved in this biotransformation. The biotransformation process was performed using fungal strains. Levofloxacin biotransformation reached 100% after 9 days of culture with Porostereum spadiceum BS34. Using genomics and proteomics analyses coupled with activity tests, we showed that P. spadiceum produces several heme-peroxidases together with H2O2-producing enzymes that could be involved in the antibiotic biotransformation process. Using UV and high-resolution mass spectrometry, we were able to detect five levofloxacin degradation products. Their putative identity based on their MS2 fragmentation patterns led to the conclusion that the piperazine moiety was the main target of oxidative modification of levofloxacin by P. spadiceum, leading to a decrease in antibiotic activity.


Asunto(s)
Peróxido de Hidrógeno , Levofloxacino , Polyporales , Antibacterianos/química , Fluoroquinolonas/química , Hongos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...