Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
PLoS One ; 19(5): e0303773, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753829

RESUMEN

The Burkholderia cepacia complex (Bcc) is the number one bacterial complex associated with contaminated Finished Pharmaceutical Products (FPPs). This has resulted in multiple healthcare related infection morbidity and mortality events in conjunction with significant FPP recalls globally. Current microbiological quality control of FPPs before release for distribution depends on lengthy, laborious, non-specific, traditional culture-dependent methods which lack sensitivity. Here, we present the development of a culture-independent Bcc Nucleic Acid Diagnostic (NAD) method for detecting Bcc contaminants associated with Over-The-Counter aqueous FPPs. The culture-independent Bcc NAD method was validated to be specific for detecting Bcc at different contamination levels from spiked aqueous FPPs. The accuracy in Bcc quantitative measurements was achieved by the high degree of Bcc recovery from aqueous FPPs. The low variation observed between several repeated Bcc quantitative measurements further demonstrated the precision of Bcc quantification in FPPs. The robustness of the culture-independent Bcc NAD method was determined when its accuracy and precision were not significantly affected during testing of numerous aqueous FPP types with different ingredient matrices, antimicrobial preservative components and routes of administration. The culture-independent Bcc NAD method showed an ability to detect Bcc in spiked aqueous FPPs at a concentration of 20 Bcc CFU/mL. The rapid (≤ 4 hours from sample in to result out), robust, culture-independent Bcc NAD method presented provides rigorous test specificity, accuracy, precision, and sensitivity. This method, validated with equivalence to ISO standard ISO/TS 12869:2019, can be a valuable diagnostic tool in supporting microbiological quality control procedures to aid the pharmaceutical industry in preventing Bcc contamination of aqueous FPPs for consumer safety.


Asunto(s)
Complejo Burkholderia cepacia , Contaminación de Medicamentos , Complejo Burkholderia cepacia/aislamiento & purificación , Complejo Burkholderia cepacia/genética , Contaminación de Medicamentos/prevención & control , Preparaciones Farmacéuticas/análisis
2.
PDA J Pharm Sci Technol ; 77(4): 296-310, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36822644

RESUMEN

In the wake of a series of outbreaks of finished pharmaceutical product-related Burkholderia cepacia complex (Bcc) human infections worldwide, the United States Food and Drug Administration (FDA) in 2017, and subsequently in 2021, issued advisory notifications to the pharmaceutical industry for stringent Bcc testing requirements for pharmaceutical manufacturing processes and for finished pharmaceutical products prior to release to the marketplace. The advisory notifications highlight non-sterile aqueous finished pharmaceutical products as being a major culprit associated with many of these human infection events. As such, there has been a significant number of Bcc-contaminated finished product recalls resulting in company revenue losses, delayed finished product release, finished product shortages for patients, and manufacturing plant shutdowns coupled with company reputational damage. With many of the finished product recall events, pharmaceutical grade water and/or manufacturing facility water distribution systems were identified as the primary origin source of Bcc contamination. Testing and monitoring regimes currently employed to identify Bcc contamination of water associated with pharmaceutical manufacturing are often limited by costly, laborious, lengthy, and nonspecific traditional microbial culture-based methodologies. Presently FDA approved, European Conformity (CE) marked, and International Organization for Standardization (ISO) standard microbial culture-independent rapid, quantitative, specific, and sensitive nucleic acid diagnostics (NAD) methodologies are now gaining greater widespread acceptance in their routine usage in testing laboratories. Here we present the development of a rapid (<4 hours from sample in to result out) single test culture-independent Bcc NAD method, incorporating a quantitative real-time polymerase chain reaction (qPCR) assay. This method can be used for the detection and simultaneous identification of all 24 Bcc species currently assigned, directly from water samples. This culture-independent Bcc NAD method is validated to the testing method equivalent of the ISO/TS 12869:2019 standard, which is a widely used rapid culture-independent NAD method for detecting Gram-negative Legionella species in water.


Asunto(s)
Infecciones por Burkholderia , Complejo Burkholderia cepacia , Ácidos Nucleicos , Humanos , Agua , NAD , Infecciones por Burkholderia/epidemiología , Estándares de Referencia , Preparaciones Farmacéuticas
3.
Viruses ; 14(9)2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36146668

RESUMEN

Bovine respiratory disease (BRD), which is the leading cause of morbidity and mortality in cattle, is caused by numerous known and unknown viruses and is responsible for the widespread use of broad-spectrum antibiotics despite the use of polymicrobial BRD vaccines. Viral metagenomics sequencing on the portable, inexpensive Oxford Nanopore Technologies MinION sequencer and sequence analysis with its associated user-friendly point-and-click Epi2ME cloud-based pathogen identification software has the potential for point-of-care/same-day/sample-to-result metagenomic sequence diagnostics of known and unknown BRD pathogens to inform a rapid response and vaccine design. We assessed this potential using in vitro viral cell cultures and nasal swabs taken from calves that were experimentally challenged with a single known BRD-associated DNA virus, namely, bovine herpes virus 1. Extensive optimisation of the standard Oxford Nanopore library preparation protocols, particularly a reduction in the PCR bias of library amplification, was required before BoHV-1 could be identified as the main virus in the in vitro cell cultures and nasal swab samples within approximately 7 h from sample to result. In addition, we observed incorrect assignment of the bovine sequence to bacterial and viral taxa due to the presence of poor-quality bacterial and viral genome assemblies in the RefSeq database used by the EpiME Fastq WIMP pathogen identification software.


Asunto(s)
Enfermedades de los Bovinos , Herpesvirus Bovino 1 , Nanoporos , Virus , Animales , Antibacterianos , Bovinos , Genómica , Herpesvirus Bovino 1/genética , Metagenómica/métodos , Virus/genética
4.
Cancer Immunol Res ; 10(10): 1190-1209, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35895745

RESUMEN

Assessment of immune-cell subsets within the tumor immune microenvironment is a powerful approach to better understand cancer immunotherapy responses. However, the use of biopsies to assess the tumor immune microenvironment poses challenges, including the potential for sampling error, restricted sampling over time, and inaccessibility of some tissues/organs, as well as the fact that single biopsy analyses do not reflect discordance across multiple intrapatient tumor lesions. Immuno-positron emission tomography (PET) presents a promising translational imaging approach to address the limitations and assess changes in the tumor microenvironment. We have developed 89Zr-DFO-REGN5054, a fully human CD8A-specific antibody conjugate, to assess CD8+ tumor-infiltrating lymphocytes (TIL) pre- and posttherapy. We used multiple assays, including in vitro T-cell activation, proliferation, and cytokine production, and in vivo viral clearance and CD8 receptor occupancy, to demonstrate that REGN5054 has minimal impact on T-cell activity. Preclinical immuno-PET studies demonstrated that 89Zr-DFO-REGN5054 specifically detected CD8+ T cells in lymphoid tissues of CD8-genetically humanized immunocompetent mice (VelociT mice) and discerned therapy-induced changes in CD8+ TILs in two models of response to a CD20xCD3 T-cell activating bispecific antibody (REGN1979, odronextamab). Toxicology studies in cynomolgus monkeys showed no overt toxicity, and immuno-PET imaging in cynomolgus monkeys demonstrated dose-dependent clearance and specific targeting to lymphoid tissues. This work supports the clinical investigation of 89Zr-DFO-REGN5054 to monitor T-cell responses in patients undergoing cancer immunotherapy.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Animales , Linfocitos T CD8-positivos , Citocinas/uso terapéutico , Humanos , Linfocitos Infiltrantes de Tumor , Macaca fascicularis , Ratones , Tomografía de Emisión de Positrones/métodos , Radioisótopos , Microambiente Tumoral , Circonio
5.
Sci Immunol ; 6(66): eabj4026, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34919442

RESUMEN

Despite the enormous promise of T cell therapies, the isolation and study of human T cell receptors (TCRs) of dedicated specificity remains a major challenge. To overcome this limitation, we generated mice with a genetically humanized system of T cell immunity. We used VelociGene technology to replace the murine TCRαß variable regions, along with regions encoding the extracellular domains of co-receptors CD4 and CD8, and major histocompatibility complex (MHC) class I and II, with corresponding human sequences. The resulting "VelociT" mice have normal myeloid and lymphoid immune cell populations, including thymic and peripheral αß T cell subsets comparable with wild-type mice. VelociT mice expressed a diverse TCR repertoire, mounted functional T cell responses to lymphocytic choriomeningitis virus infection, and could develop experimental autoimmune encephalomyelitis. Immunization of VelociT mice with human tumor-associated peptide antigens generated robust, antigen-specific responses and led to identification of a TCR against tumor antigen New York esophageal squamous cell carcinoma-1 with potent antitumor activity. These studies demonstrate that VelociT mice mount clinically relevant T cell responses to both MHC-I­ and MHC-II­restricted antigens, providing a powerful new model for analyzing T cell function in human disease. Moreover, VelociT mice are a new platform for de novo discovery of therapeutic human TCRs.


Asunto(s)
Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Linfocitos T/inmunología , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T alfa-beta/genética
6.
Gigascience ; 9(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32520351

RESUMEN

BACKGROUND: Riverine ecosystems are biogeochemical powerhouses driven largely by microbial communities that inhabit water columns and sediments. Because rivers are used extensively for anthropogenic purposes (drinking water, recreation, agriculture, and industry), it is essential to understand how these activities affect the composition of river microbial consortia. Recent studies have shown that river metagenomes vary considerably, suggesting that microbial community data should be included in broad-scale river ecosystem models. But such ecogenomic studies have not been applied on a broad "aquascape" scale, and few if any have applied the newest nanopore technology. RESULTS: We investigated the metagenomes of 11 rivers across 3 continents using MinION nanopore sequencing, a portable platform that could be useful for future global river monitoring. Up to 10 Gb of data per run were generated with average read lengths of 3.4 kb. Diversity and diagnosis of river function potential was accomplished with 0.5-1.0 ⋅ 106 long reads. Our observations for 7 of the 11 rivers conformed to other river-omic findings, and we exposed previously unrecognized microbial biodiversity in the other 4 rivers. CONCLUSIONS: Deeper understanding that emerged is that river microbial consortia and the ecological functions they fulfil did not align with geographic location but instead implicated ecological responses of microbes to urban and other anthropogenic effects, and that changes in taxa manifested over a very short geographic space.


Asunto(s)
Metagenoma , Metagenómica/métodos , Consorcios Microbianos , Microbiota , Plancton/genética , Biodiversidad , Secuenciación de Nanoporos , Ríos/microbiología , Microbiología del Agua
8.
PLoS One ; 13(11): e0207020, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30439982

RESUMEN

Profiling T cell receptor (TCR) repertoire via short read transcriptome sequencing (RNA-Seq) has a unique advantage of probing simultaneously TCRs and the genome-wide RNA expression of other genes. However, compared to targeted amplicon approaches, the shorter read length is more prone to mapping error. In addition, only a small percentage of the genome-wide reads may cover the TCR loci and thus the repertoire could be significantly under-sampled. Although this approach has been applied in a few studies, the utility of transcriptome sequencing in probing TCR repertoires has not been evaluated extensively. Here we present a systematic assessment of RNA-Seq in TCR profiling. We evaluate the power of both Fluidigm C1 full-length single cell RNA-Seq and bulk RNA-Seq in characterizing the repertoires of different diversities under either naïve conditions or after immunogenic challenges. Standard read length and sequencing coverage were employed so that the evaluation was conducted in accord with the current RNA-Seq practices. Despite high sequencing depth in bulk RNA-Seq, we encountered difficulty quantifying TCRs with low transcript abundance (<1%). Nevertheless, top enriched TCRs with an abundance of 1-3% or higher can be faithfully detected and quantified. When top TCR sequences are of interest and transcriptome sequencing is available, it is worthwhile to conduct a TCR profiling using the RNA-Seq data.


Asunto(s)
ARN/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Animales , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Sitios Genéticos , Virus de la Coriomeningitis Linfocítica/fisiología , Ratones , Ratones Endogámicos C57BL , ARN/química , ARN/aislamiento & purificación , Receptores de Antígenos de Linfocitos T/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Bazo/citología , Bazo/inmunología , Bazo/virología , Transcriptoma
9.
Artículo en Inglés | MEDLINE | ID: mdl-28790976

RESUMEN

AIMS: Biological and lifestyle factors, such as daily rhythm, caffeine ingestion, recent infection, and antibiotic intake, have been shown to influence measurements of salivary cortisol (SC) and secretory immunoglobulin A (sIgA). Current methodology in unsynchronized, field-based biomarker studies does not take these effects into account. Moreover, very little is known about the combined effects of biological and lifestyle factors on SC and sIgA. This study supports development of a protocol for measuring biomarkers from saliva collected in field studies by examining the individual and combined effects of these factors on SC and sIgA. METHOD: At three time points (start of the pre-season; start of playing season; and end of playing season), saliva samples were collected from the entire squad of 45 male players of an elite Australian Football club (mean age 22.8 ± 3.5 years). At each time, point daily rhythm and lifestyle factors were determined via a questionnaire, and concentrations of both SC and sIgA via an enzyme linked immuno-sorbent (ELISA) assay of saliva samples. In addition, player times to produce 0.5 mL of saliva were recorded. RESULTS: Analysis of covariance of the data across the three time points showed that daily rhythm had a more consistent effect than the lifestyle factors of caffeine ingestion, recent infection, and antibiotic intake on SC, but not on sIgA. Data for sIgA and SC concentrations were then adjusted for the effects of daily rhythm and lifestyle factors, and correlational analysis of the pooled data was used to examine the relative effects of these two sources of influence on sIgA and SC. With the exception of time to produce saliva, the biological measures of stress were affected by players' daily rhythms. When daily rhythm was taken into account the group of lifestyle factors did not have an additional effect. DISCUSSION: It is recommended that future studies measuring SC and sIgA make additional adjustments for the daily rhythm, in particular time since first sight of daylight, as small measurement errors of biomarkers can confound discrimination among study participants.

10.
Anal Bioanal Chem ; 409(14): 3497-3505, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28349168

RESUMEN

The detection and profiling of microRNAs are of great interest in disease diagnosis and prognosis. In this paper, we present a method for the rapid amplification-free detection of microRNAs from total RNA samples. In a two-step sandwich assay approach, fluorescently labeled reporter probes were first hybridized with their corresponding target microRNAs. The reaction mix was then added to a microarray to enable their specific capture and detection. Reporter probes were Tm equalized, enabling specificity by adjusting the length of the capture probe while maintaining the stabilizing effect brought about by coaxial base stacking. The optimized assay can specifically detect microRNAs in spiked samples at concentrations as low as 1 pM and from as little as 100 ng of total RNA in 2 h. The detection signal was linear between 1 and 100 pM (R2 = 0.99). Our assay data correlated well with results generated by qPCR when we profiled a select number of breast cancer related microRNAs in a total RNA sample.


Asunto(s)
MicroARNs/análisis , Hibridación de Ácido Nucleico/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Colorantes Fluorescentes/química , Humanos , Límite de Detección , Análisis de Secuencia por Matrices de Oligonucleótidos/economía , Sondas de Oligonucleótidos/química , Espectrometría de Fluorescencia/economía , Espectrometría de Fluorescencia/métodos , Factores de Tiempo
11.
BMC Infect Dis ; 16: 366, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27487852

RESUMEN

BACKGROUND: Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. METHODS: To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. RESULTS: dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. CONCLUSIONS: TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification of Mycobacterium tuberculosis would provide a clinically useful readout. The methods described in this study provide a means by which the technical performance of quantitative molecular methods can be evaluated independently of clinical variability to improve accuracy of measurement results. These will assist in ultimately increasing the likelihood that such approaches could be used to improve patient management of TB.


Asunto(s)
ADN Bacteriano/aislamiento & purificación , Mycobacterium tuberculosis/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Tuberculosis Pulmonar/diagnóstico , Adulto , Femenino , Humanos , Masculino , Microscopía , Técnicas de Diagnóstico Molecular , Patología Molecular , Sensibilidad y Especificidad
12.
J Microbiol Methods ; 127: 197-202, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27319375

RESUMEN

Three duplex molecular beacon based real-time Nucleic Acid Sequence Based Amplification (NASBA) assays have been designed and experimentally validated targeting RNA transcripts for the detection and identification of Haemophilus influenzae, Neisseria meningitidis and Streptococcus pneumoniae respectively. Each real-time NASBA diagnostics assay includes an endogenous non-competitive Internal Amplification Control (IAC) to amplify the splice variant 1 mRNA of the Homo sapiens TBP gene from human total RNA. All three duplex real-time NASBA diagnostics assays were determined to be 100% specific for the target species tested for. Also the Limits of Detection (LODs) for the H. influenzae, N. meningitidis and S. pneumoniae duplex real-time NASBA assays were 55.36, 0.99, and 57.24 Cell Equivalents (CE) respectively. These robust duplex real-time NASBA diagnostics assays have the potential to be used in a clinical setting for the rapid (<60min) specific detection and identification of the most prominent microorganisms associated with bacterial meningitis in humans.


Asunto(s)
Haemophilus influenzae/aislamiento & purificación , Meningitis Bacterianas/microbiología , Neisseria meningitidis/aislamiento & purificación , Replicación de Secuencia Autosostenida/métodos , Streptococcus pneumoniae/aislamiento & purificación , Haemophilus influenzae/genética , Humanos , Límite de Detección , Meningitis Bacterianas/diagnóstico , Meningitis por Haemophilus/diagnóstico , Meningitis por Haemophilus/microbiología , Meningitis Meningocócica/diagnóstico , Meningitis Meningocócica/microbiología , Meningitis Neumocócica/diagnóstico , Meningitis Neumocócica/microbiología , Neisseria meningitidis/genética , Sensibilidad y Especificidad , Streptococcus pneumoniae/genética , Proteína de Unión a TATA-Box/genética
13.
BMC Infect Dis ; 15: 481, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26515409

RESUMEN

BACKGROUND: Streptococcus pneumoniae is an important cause of microbial disease in humans. The introduction of multivalent vaccines has coincided with a dramatic decrease in the number of pneumococcal-related deaths. In spite of this, at a global level, pneumococcal infection remains an important cause of death among children under 5 years of age and in adults 65 years of age or older. In order to properly manage patients and control the spread of infection, a rapid and highly sensitive diagnostic method is needed for routine implementation, especially in resource-limited regions where pneumococcal disease is most prevalent. METHODS: Using the gene encoding leader peptidase A as a molecular diagnostics target, a real-time RPA assay was designed and optimised for the detection of S. pneumoniae in whole blood. The performance of the assay was compared to real-time PCR in terms of its analytical limit of detection and specificity. The inhibitory effect of human genomic DNA on amplification was investigated. The potential clinical utility of the assay was investigated using a small number of clinical samples. RESULTS: The RPA assay has a limit of detection equivalent to PCR (4.0 and 5.1 genome equivalents per reaction, respectively) and was capable of detecting the equivalent of <1 colony forming unit of S. pneumoniae when spiked into human whole blood. The RPA assay was 100 % inclusive (38/38 laboratory reference strains and 19/19 invasive clinical isolates) and 100 % exclusive; differentiating strains of S. pneumoniae species from other viridans group streptococci, including S. pseudopneumoniae. When applied to the analysis of a small number (n = 11) of clinical samples (blood culture positive for S. pneumoniae), the RPA assay was demonstrated to be both rapid and sensitive. CONCLUSIONS: The RPA assay developed in this work is shown to be as sensitive and as specific as PCR. In terms of reaction kinetics, the RPA assay is shown to exceed those of the PCR, with the RPA running to completion in 20 minutes and capable generating a positive signal in as little as 6 minutes. This work represents a potentially suitable assay for application in point-of-care settings.


Asunto(s)
ADN Bacteriano/sangre , Técnicas de Amplificación de Ácido Nucleico , Recombinasas/metabolismo , Streptococcus pneumoniae/genética , Humanos , Infecciones Neumocócicas/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Streptococcus pneumoniae/aislamiento & purificación
14.
PLoS One ; 10(9): e0137389, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26355751

RESUMEN

INTRODUCTION: Micro RNAs (miRNAs) are a class of highly conserved small non-coding RNAs that play an important part in the post-transcriptional regulation of gene expression. A substantial number of miRNAs have been proposed as biomarkers for diseases. While reverse transcriptase Real-time PCR (RT-qPCR) is considered the gold standard for the evaluation and validation of miRNA biomarkers, small RNA sequencing is now routinely being adopted for the identification of dysregulated miRNAs. However, in many cases where putative miRNA biomarkers are identified using small RNA sequencing, they are not substantiated when RT-qPCR is used for validation. To date, there is a lack of consensus regarding optimal methodologies for miRNA detection, quantification and standardisation when different platform technologies are used. MATERIALS AND METHODS: In this study we present an experimental pipeline that takes into consideration sample collection, processing, enrichment, and the subsequent comparative analysis of circulating small ribonucleic acids using small RNA sequencing and RT-qPCR. RESULTS, DISCUSSION, CONCLUSIONS: Initially, a panel of miRNAs dysregulated in circulating blood from breast cancer patients compared to healthy women were identified using small RNA sequencing. MiR-320a was identified as the most dysregulated miRNA between the two female cohorts. Total RNA and enriched small RNA populations (<30 bp) isolated from peripheral blood from the same female cohort samples were then tested for using a miR-320a RT-qPCR assay. When total RNA was analysed with this miR-320a RT-qPCR assay, a 2.3-fold decrease in expression levels was observed between blood samples from healthy controls and breast cancer patients. However, upon enrichment for the small RNA population and subsequent analysis of miR-320a using RT-qPCR, its dysregulation in breast cancer patients was more pronounced with an 8.89-fold decrease in miR-320a expression. We propose that the experimental pipeline outlined could serve as a robust approach for the identification and validation of small RNA biomarkers for disease.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs/sangre , MicroARNs/metabolismo , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Humanos , Anotación de Secuencia Molecular , ARN Neoplásico/genética , ARN Neoplásico/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Estándares de Referencia , Análisis de Secuencia de ARN
15.
Diagn Microbiol Infect Dis ; 83(2): 112-6, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26166209

RESUMEN

Haemophilus influenzae is recognised as an important human pathogen associated with invasive infections, including bloodstream infection and meningitis. Currently used molecular-based diagnostic assays lack specificity in correctly detecting and identifying H. influenzae. As such, there is a need to develop novel diagnostic assays for the specific identification of H. influenzae. Whole genome comparative analysis was performed to identify putative diagnostic targets, which are unique in nucleotide sequence to H. influenzae. From this analysis, we identified 2H. influenzae putative diagnostic targets, phoB and pstA, for use in real-time PCR diagnostic assays. Real-time PCR diagnostic assays using these targets were designed and optimised to specifically detect and identify all 55H. influenzae strains tested. These novel rapid assays can be applied to the specific detection and identification of H. influenzae for use in epidemiological studies and could also enable improved monitoring of invasive disease caused by these bacteria.


Asunto(s)
Técnicas Bacteriológicas/métodos , Biología Computacional , ADN Bacteriano/genética , Genoma Bacteriano , Infecciones por Haemophilus/diagnóstico , Haemophilus influenzae/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/genética , Humanos , Epidemiología Molecular/métodos , Factores de Tiempo
16.
J Clin Microbiol ; 53(9): 2854-60, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26109443

RESUMEN

Haemophilus influenzae is a significant causative agent of respiratory tract infections (RTI) worldwide. The development of a rapid H. influenzae diagnostic assay that would allow for the implementation of infection control measures and also improve antimicrobial stewardship for patients is required. A number of nucleic acid diagnostics approaches that detect H. influenzae in RTIs have been described in the literature; however, there are reported specificity and sensitivity limitations for these assays. In this study, a novel real-time PCR diagnostic assay targeting the smpB gene was designed to detect all serogroups of H. influenzae. The assay was validated using a panel of well-characterized Haemophilus spp. Subsequently, 44 Haemophilus clinical isolates were collected, and 36 isolates were identified as H. influenzae using a gold standard methodology that combined the results of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and a fucK diagnostic assay. Using the novel smpB diagnostic assay, 100% concordance was observed with the gold standard, demonstrating a sensitivity of 100% (95% confidence interval [CI], 90.26% to 100.00%) and a specificity of 100% (95% CI, 63.06% to 100.00%) when used on clinical isolates. To demonstrate the clinical utility of the diagnostic assay presented, a panel of lower RTI samples (n = 98) were blindly tested with the gold standard and smpB diagnostic assays. The results generated were concordant for 94/98 samples tested, demonstrating a sensitivity of 90.91% (95% CI, 78.33% to 97.47%) and a specificity of 100% (95% CI, 93.40% to 100.00%) for the novel smpB assay when used directly on respiratory specimens.


Asunto(s)
Técnicas Bacteriológicas/métodos , Infecciones por Haemophilus/diagnóstico , Haemophilus influenzae/aislamiento & purificación , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Infecciones del Sistema Respiratorio/diagnóstico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Haemophilus influenzae/química , Haemophilus influenzae/genética , Humanos , Sensibilidad y Especificidad
17.
BMC Biotechnol ; 15: 6, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25888294

RESUMEN

BACKGROUND: Water and High Purity Water (HPW) distribution systems can be contaminated with human pathogenic microorganisms. This biocontamination may pose a risk to human health as HPW is commonly used in the industrial, pharmaceutical and clinical sectors. Currently, routine microbiological testing of HPW is performed using slow and labour intensive traditional microbiological based techniques. There is a need to develop a rapid culture independent methodology to quantitatively detect and identify biocontamination associated with HPW. RESULTS: A novel internally controlled 5-plex real-time PCR Nucleic Acid Diagnostics assay (NAD), was designed and optimised in accordance with Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines, to rapidly detect, identify and quantify the human pathogenic bacteria Stenotrophomonas maltophilia, Burkholderia species, Pseudomonas aeruginosa and Serratia marcescens which are commonly associated with the biocontamination of water and water distribution systems. The specificity of the 5-plex assay was tested against genomic DNA isolated from a panel of 95 microorganisms with no cross reactivity observed. The analytical sensitivities of the S. maltophilia, B. cepacia, P. aeruginosa and the S. marcescens assays are 8.5, 5.7, 3.2 and 7.4 genome equivalents respectively. Subsequently, an analysis of HPW supplied by a Millipore Elix 35 water purification unit performed using standard microbiological methods revealed high levels of naturally occurring microbiological contamination. Five litre water samples from this HPW delivery system were also filtered and genomic DNA was purified directly from these filters. These DNA samples were then tested using the developed multiplex real-time PCR NAD assay and despite the high background microbiological contamination observed, both S. maltophilia and Burkholderia species were quantitatively detected and identified. At both sampling points the levels of both S. maltophilia and Burkholderia species present was above the threshold of 10 cfu/100 ml recommended by both EU and US guidelines. CONCLUSIONS: The novel culture independent methodology described in this study allows for rapid (<5 h), quantitative detection and identification of these four human pathogens from biocontaminated water and HPW distribution systems. We propose that the described NAD assay and associated methodology could be applied to routine testing of water and HPW distribution systems to assure microbiological safety and high water quality standards.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Técnicas de Tipificación Bacteriana/métodos , Tipificación Molecular/métodos , Microbiología del Agua , Bacterias/genética , Burkholderia/clasificación , Burkholderia/genética , Burkholderia/aislamiento & purificación , ADN Bacteriano/análisis , Humanos , Reacción en Cadena de la Polimerasa Multiplex , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Serratia marcescens/clasificación , Serratia marcescens/genética , Serratia marcescens/aislamiento & purificación , Stenotrophomonas maltophilia/clasificación , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/aislamiento & purificación , Purificación del Agua
18.
J Antimicrob Chemother ; 69(7): 1729-33, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24677160

RESUMEN

A key component for tackling the ever more serious antimicrobial resistance problem in Gram-negative bacteria is the introduction of rapid nucleic acid diagnostics. Successful incorporation of new diagnostic technologies has the potential benefit of improving not only patient treatment but also infection control and antimicrobial stewardship. However, there are still many hurdles to overcome, such as the complexity of resistance mechanisms in Gram-negative bacteria, the discrepancy between phenotype and genotype and the difficulty in distinguishing pathogens from background commensals. A small number of manufacturers have introduced tests to the market that concentrate partly or specifically on resistance determinants in Gram-negative bacteria. These are currently predominantly based on different types of PCR technology. The development of new technologies, such as whole-genome sequencing and the combination of MALDI-TOF with PCR, holds much promise for the introduction of improved diagnostics for the future.


Asunto(s)
ADN Bacteriano/genética , Farmacorresistencia Bacteriana , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/genética , Técnicas de Diagnóstico Molecular/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Reacción en Cadena de la Polimerasa/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
Biomol Detect Quantif ; 1(1): 3-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27920992

RESUMEN

Gastroenteritis is caused by a wide range of viral, bacterial and parasitic pathogens and causes millions of deaths worldwide each year, particularly in infant populations in developing countries. Traditional microbiological culture and immunological based tests are time consuming, laborious and often lack diagnostic specificity and sensitivity. As a result patients can receive suboptimal and/or inappropriate antimicrobial treatment. In recent years, rapid nucleic acid diagnostics (NAD) technologies have become available to complement or even bypass and replace these traditional microbiological culture and immunological based tests. The main purpose of this review is to describe a number of recently available multiparametric commercial tests, to support the rapid and accurate clinical diagnosis of human gastroenteritis. These state of the art technologies have the ability to identify a wide range of microorganisms associated with enteric gastroenteritis. Following further technological innovation and more comprehensive clinical validation studies, these NAD tests have the potential to impact on the economic burden of health care systems. These rapid NAD tests can also be used to guide improved patient therapy in a timely manner which will reduce the extent of morbidity and mortality associated with these infections globally.

20.
J Ind Microbiol Biotechnol ; 40(9): 1005-13, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23783648

RESUMEN

High-purity water (HPW) can be contaminated with pathogenic microorganisms, which may result in human infection. Current culture-based techniques for the detection of microorganisms from HPW can be slow and laborious. The aim of this study was to develop a rapid method for the quantitative detection and identification of pathogenic bacteria causing low-level contamination of HPW. A novel internally controlled multiplex real-time PCR diagnostics assay was designed and optimized to specifically detect and identify Pseudomonas aeruginosa and the Burkholderia genus. Sterile HPW, spiked with a bacterial load ranging from 10 to 10(3) cfu/100 ml, was filtered and the bacterial cells were removed from the filters by sonication. Total genomic DNA was then purified from these bacteria and subjected to testing with the developed novel multiplex real-time PCR diagnostics assay. The specific P. aeruginosa and Burkholderia genus assays have an analytical sensitivity of 3.5 genome equivalents (GE) and 3.7 GE, respectively. This analysis demonstrated that it was possible to detect a spiked bacterial load of 1.06 × 10(2) cfu/100 ml for P. aeruginosa and 2.66 × 10(2) cfu/100 ml for B. cepacia from a 200-ml filtered HPW sample. The rapid diagnostics method described can reliably detect, identify, and quantify low-level contamination of HPW with P. aeruginosa and the Burkholderia genus in <4 h. We propose that this rapid diagnostics method could be applied to the pharmaceutical and clinical sectors to assure the safety and quality of HPW, medical devices, and patient-care equipment.


Asunto(s)
Burkholderia/aislamiento & purificación , Pseudomonas aeruginosa/aislamiento & purificación , Microbiología del Agua , Calidad del Agua , Burkholderia/genética , ADN Bacteriano/análisis , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Pseudomonas aeruginosa/genética , Control de Calidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Estándares de Referencia , Sonicación , Factores de Tiempo , Purificación del Agua , Calidad del Agua/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA