Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8002, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266533

RESUMEN

The KRAS oncogene drives many common and highly fatal malignancies. These include pancreatic, lung, and colorectal cancer, where various activating KRAS mutations have made the development of KRAS inhibitors difficult. Here we identify the scaffold protein SH3 and multiple ankyrin repeat domain 3 (SHANK3) as a RAS interactor that binds active KRAS, including mutant forms, competes with RAF and limits oncogenic KRAS downstream signalling, maintaining mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activity at an optimal level. SHANK3 depletion breaches this threshold, triggering MAPK/ERK signalling hyperactivation and MAPK/ERK-dependent cell death in KRAS-mutant cancers. Targeting this vulnerability through RNA interference or nanobody-mediated disruption of the SHANK3-KRAS interaction constrains tumour growth in vivo in female mice. Thus, inhibition of SHANK3-KRAS interaction represents an alternative strategy for selective killing of KRAS-mutant cancer cells through excessive signalling.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Mutación , Proteínas del Tejido Nervioso , Proteínas Proto-Oncogénicas p21(ras) , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Humanos , Ratones , Línea Celular Tumoral , Femenino , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Sistema de Señalización de MAP Quinasas/genética , Muerte Celular/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones Desnudos , Proteínas de Microfilamentos
2.
Essays Biochem ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712401

RESUMEN

The vast structural diversity of sulfated polysaccharides demands an equally diverse array of enzymes known as polysaccharide sulfotransferases (PSTs). PSTs are present across all kingdoms of life, including algae, fungi and archaea, and their sulfation pathways are relatively unexplored. Sulfated polysaccharides possess anti-inflammatory, anticoagulant and anti-cancer properties and have great therapeutic potential. Current identification of PSTs using Pfam has been predominantly focused on the identification of glycosaminoglycan (GAG) sulfotransferases because of their pivotal roles in cell communication, extracellular matrix formation and coagulation. As a result, our knowledge of non-GAG PSTs structure and function remains limited. The major sulfotransferase families, Sulfotransfer_1 and Sulfotransfer_2, display broad homology and should enable the capture of a wide assortment of sulfotransferases but are limited in non-GAG PST sequence annotation. In addition, sequence annotation is further restricted by the paucity of biochemical analyses of PSTs. There are now high-throughput and robust assays for sulfotransferases such as colorimetric PAPS (3'-phosphoadenosine 5'-phosphosulfate) coupled assays, Europium-based fluorescent probes for ratiometric PAP (3'-phosphoadenosine-5'-phosphate) detection, and NMR methods for activity and product analysis. These techniques provide real-time and direct measurements to enhance the functional annotation and subsequent analysis of sulfated polysaccharides across the tree of life to improve putative PST identification and characterisation of function. Improved annotation and biochemical analysis of PST sequences will enhance the utility of PSTs across biomedical and biotechnological sectors.

3.
Org Biomol Chem ; 20(3): 596-605, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34951618

RESUMEN

Sulfotransferases constitute a ubiquitous class of enzymes which are poorly understood due to the lack of a convenient tool for screening their activity. These enzymes use the anion PAPS (adenosine-3'-phosphate-5'-phosphosulfate) as a donor for a broad range of acceptor substrates, including carbohydrates, producing sulfated compounds and PAP (adenosine-3',5'-diphosphate) as a side product. We present a europium(III)-based probe that binds reversibly to both PAPS and PAP, producing a larger luminescence enhancement with the latter anion. We exploit this greater emission enhancement with PAP to demonstrate the first direct real-time assay of a heparan sulfate sulfotransferase using a multi-well plate format. The selective response of our probe towards PAP over structurally similar nucleoside phosphate anions, and over other anions, is investigated and discussed. This work opens the possibility of investigating more fully the roles played by this enzyme class in health and disease, including operationally simple inhibitor screening.


Asunto(s)
Complejos de Coordinación/metabolismo , Europio/metabolismo , Fosfoadenosina Fosfosulfato/metabolismo , Sulfotransferasas/metabolismo , Aniones/química , Aniones/metabolismo , Cationes/química , Cationes/metabolismo , Complejos de Coordinación/química , Europio/química , Estructura Molecular , Fosfoadenosina Fosfosulfato/química , Sulfotransferasas/química , Factores de Tiempo
4.
Carbohydr Res ; 499: 108225, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33353664

RESUMEN

The formation of ß-glucuronides is a major route by which mammals detoxify and remove breakdown products, such as l-tyrosine, as well as many xenobiotics, from their systems. In humans, dietary l-tyrosine is broken down largely by the action of the anaerobic gut bacterium C. difficile to p-cresol, providing a competitive advantage in the gut microbiota. Ortho- (o-) and meta- (m-), cresols, also present in the environment, may share a common degradative pathway. Relatively little work has been done on cresyl glucuronides. Here, a direct synthesis of o-, m-, and p-cresyl ß-D-glucuronides from methyl 1,2,3,4 tetra-O-acetyl-ß-d-glucuronate and the respective cresol employing trimethylsilyltriflate as promoter is presented. The protected intermediates were hydrolysed using aqueous sodium carbonate to yield the cresyl ß-glucuronides. The toxicities of the o-, m- and p-cresyl ß-D-glucuronides were compared. All three were less toxic to HEK293 cells than their respective cresol precursors: toxicity followed the order o < m < p for Na+ salts and o < p < m for Ca2+ salts. The m-cresyl-glucuronide Ca2+ salt and p-cresyl-glucuronide Na+ salt reduced colony formation by 11% and 9% (v. 30% reduction from the aglycone) respectively, whereas o-cresyl-glucuronide (both Na+ and Ca2+ salts), mildly stimulated HEK293 cell growth.


Asunto(s)
Cresoles/farmacología , Glucurónidos/farmacología , Supervivencia Celular/efectos de los fármacos , Cresoles/síntesis química , Cresoles/química , Relación Dosis-Respuesta a Droga , Glucurónidos/síntesis química , Glucurónidos/química , Células HEK293 , Humanos , Estructura Molecular , Estereoisomerismo
5.
Biochem J ; 477(6): 1159-1178, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32065231

RESUMEN

Overexpression of S100P promotes breast cancer metastasis in animals and elevated levels in primary breast cancers are associated with poor patient outcomes. S100P can differentially interact with nonmuscle myosin (NM) isoforms (IIA > IIC > IIB) leading to the redistribution of actomyosin filaments to enhance cell migration. Using COS-7 cells which do not naturally express NMIIA, S100P is now shown to interact directly with α,ß-tubulin in vitro and in vivo with an equilibrium Kd of 2-3 × 10-7 M. The overexpressed S100P is located mainly in nuclei and microtubule organising centres (MTOC) and it significantly reduces their number, slows down tubulin polymerisation and enhances cell migration in S100P-induced COS-7 or HeLa cells. It fails, however, to significantly reduce cell adhesion, in contrast with NMIIA-containing S100P-inducible HeLa cells. When taxol is used to stabilise MTs or colchicine to dissociate MTs, S100P's stimulation of migration is abolished. Affinity-chromatography of tryptic digests of α and ß-tubulin on S100P-bound beads identifies multiple S100P-binding sites consistent with S100P binding to all four half molecules in gel-overlay assays. When screened by NMR and ITC for interacting with S100P, four chemically synthesised peptides show interactions with low micromolar dissociation constants. The two highest affinity peptides significantly inhibit binding of S100P to α,ß-tubulin and, when tagged for cellular entry, also inhibit S100P-induced reduction in tubulin polymerisation and S100P-enhancement of COS-7 or HeLa cell migration. A third peptide incapable of interacting with S100P also fails in this respect. Thus S100P can interact directly with two different cytoskeletal filaments to independently enhance cell migration, the most important step in the metastatic cascade.


Asunto(s)
Proteínas de Unión al Calcio/biosíntesis , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Proteínas de Neoplasias/biosíntesis , Tubulina (Proteína)/biosíntesis , Animales , Células COS , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Chlorocebus aethiops , Células HeLa , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
6.
Carbohydr Polym ; 222: 115031, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31320064

RESUMEN

The detailed structure of a further Chondroitin Sulfate from Litopenaeus vannamei shrimp (sCS) is described. The backbone structure was established by 1H/13C NMR, which identified 3-O-sulfated GlcA, 4-O-sulfated GalNAc, 6-O-sulfated GalNAc, and 4,6-di-O-sulfated GalNAc residues. GlcA is linked to GalNAc 4,6 di S and GlcA 3S is linked to GalNAc 4S, GalNAc 4,6 di-S and GalNAc6S residues. The anticoagulant properties of this sCS were evaluated by activated partial thromboplastin time, anti-IIa, anti-Xa and anti-heparin cofactor II-mediated activities, and sCS failed to stabilise antithrombin in a fluoresence shift assay. The anti-inflammatory effect of sCS was explored using a model of acute peritonitis, followed by leukocyte count and measurement of the cytokines, IL-1ß, IL-6 and TNF-α. The compound showed low clotting effects, but high anti-IIa activity and HCII-mediated thrombin inhibition. Its anti-inflammatory effect was shown by leukocyte recruitment inhibition and a decrease in pro-inflammatory cytokine levels. Although the biological role of sCS remains unknown, its properties indicate that it is suitable for studies of multi-potent molecules obtained from natural sources.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antitrombinas/uso terapéutico , Sulfatos de Condroitina/uso terapéutico , Inflamación/tratamiento farmacológico , Penaeidae/química , Peritonitis/tratamiento farmacológico , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antitrombinas/química , Antitrombinas/aislamiento & purificación , Sulfatos de Condroitina/química , Sulfatos de Condroitina/aislamiento & purificación , Citocinas/metabolismo , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos C57BL , Peso Molecular , Óxido Nítrico/metabolismo , Peritonitis/inducido químicamente , Células RAW 264.7 , Ratas Wistar
7.
Biochem J ; 475(15): 2417-2433, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-29934491

RESUMEN

Sulfation of carbohydrate residues occurs on a variety of glycans destined for secretion, and this modification is essential for efficient matrix-based signal transduction. Heparan sulfate (HS) glycosaminoglycans control physiological functions ranging from blood coagulation to cell proliferation. HS biosynthesis involves membrane-bound Golgi sulfotransferases, including HS 2-O-sulfotransferase (HS2ST), which transfers sulfate from the cofactor PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the 2-O position of α-l-iduronate in the maturing polysaccharide chain. The current lack of simple non-radioactive enzyme assays that can be used to quantify the levels of carbohydrate sulfation hampers kinetic analysis of this process and the discovery of HS2ST inhibitors. In the present paper, we describe a new procedure for thermal shift analysis of purified HS2ST. Using this approach, we quantify HS2ST-catalysed oligosaccharide sulfation using a novel synthetic fluorescent substrate and screen the Published Kinase Inhibitor Set, to evaluate compounds that inhibit catalysis. We report the susceptibility of HS2ST to a variety of cell-permeable compounds in vitro, including polyanionic polar molecules, the protein kinase inhibitor rottlerin and oxindole-based RAF kinase inhibitors. In a related study, published back-to-back with the present study, we demonstrated that tyrosyl protein sulfotranferases are also inhibited by a variety of protein kinase inhibitors. We propose that appropriately validated small-molecule compounds could become new tools for rapid inhibition of glycan (and protein) sulfation in cells, and that protein kinase inhibitors might be repurposed or redesigned for the specific inhibition of HS2ST.


Asunto(s)
Proteínas Aviares/química , Heparitina Sulfato/química , Oligosacáridos/química , Inhibidores de Proteínas Quinasas/química , Sulfotransferasas/química , Quinasas raf/antagonistas & inhibidores , Animales , Proteínas Aviares/genética , Pollos , Heparitina Sulfato/farmacología , Humanos , Oligosacáridos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Sulfotransferasas/genética , Porcinos , Quinasas raf/química
8.
Structure ; 25(12): 1856-1866.e2, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29153504

RESUMEN

Talin mediates attachment of the cell to the extracellular matrix. It is targeted by the Rap1 effector RIAM to focal adhesion sites and subsequently undergoes force-induced conformational opening to recruit the actin-interacting protein vinculin. The conformational switch involves the talin R3 domain, which binds RIAM when closed and vinculin when open. Here, we apply pressure to R3 and measure 1H, 15N, and 13C chemical shift changes, which are fitted using a simple model, and indicate that R3 is only 50% closed: the closed form is a four-helix bundle, while in the open state helix 1 is twisted out. Strikingly, a mutant of R3 that binds RIAM with an affinity similar to wild-type but more weakly to vinculin is shown to be 0.84 kJ mol-1 more stable when closed. These results demonstrate that R3 is thermodynamically poised to bind either RIAM or vinculin, and thus constitutes a good mechanosensitive switch.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Presión Hidrostática , Proteínas de la Membrana/química , Simulación del Acoplamiento Molecular , Talina/química , Vinculina/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Sitios de Unión , Proteínas de la Membrana/metabolismo , Ratones , Simulación de Dinámica Molecular , Unión Proteica , Talina/metabolismo , Vinculina/metabolismo
9.
Nat Cell Biol ; 19(4): 292-305, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28263956

RESUMEN

SHANK3, a synaptic scaffold protein and actin regulator, is widely expressed outside of the central nervous system with predominantly unknown function. Solving the structure of the SHANK3 N-terminal region revealed that the SPN domain is an unexpected Ras-association domain with high affinity for GTP-bound Ras and Rap G-proteins. The role of Rap1 in integrin activation is well established but the mechanisms to antagonize it remain largely unknown. Here, we show that SHANK1 and SHANK3 act as integrin activation inhibitors by sequestering active Rap1 and R-Ras via the SPN domain and thus limiting their bioavailability at the plasma membrane. Consistently, SHANK3 silencing triggers increased plasma membrane Rap1 activity, cell spreading, migration and invasion. Autism-related mutations within the SHANK3 SPN domain (R12C and L68P) disrupt G-protein interaction and fail to counteract integrin activation along the Rap1-RIAM-talin axis in cancer cells and neurons. Altogether, we establish SHANKs as critical regulators of G-protein signalling and integrin-dependent processes.


Asunto(s)
Integrina beta1/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Proteínas ras/metabolismo , Secuencia de Aminoácidos , Animales , Adhesión Celular , Línea Celular , Movimiento Celular , Extensiones de la Superficie Celular/metabolismo , Femenino , Citometría de Flujo , Ratones Endogámicos C57BL , Modelos Biológicos , Mutación/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Reacción en Cadena de la Polimerasa , Unión Proteica , Dominios Proteicos , Ratas Wistar , Alineación de Secuencia , Talina/metabolismo , Ubiquitinas/genética
10.
Structure ; 24(7): 1130-41, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27265849

RESUMEN

Cell migration requires coordination between integrin-mediated cell adhesion to the extracellular matrix and force applied to adhesion sites. Talin plays a key role in coupling integrin receptors to the actomyosin contractile machinery, while deleted in liver cancer 1 (DLC1) is a Rho GAP that binds talin and regulates Rho, and therefore actomyosin contractility. We show that the LD motif of DLC1 forms a helix that binds to the four-helix bundle of the talin R8 domain in a canonical triple-helix arrangement. We demonstrate that the same R8 surface interacts with the paxillin LD1 and LD2 motifs. We identify key charged residues that stabilize the R8 interactions with LD motifs and demonstrate their importance in vitro and in cells. Our results suggest a network of competitive interactions in adhesion complexes that involve LD motifs, and identify mutations that can be used to analyze the biological roles of specific protein-protein interactions in cell migration.


Asunto(s)
Proteínas Activadoras de GTPasa/química , Simulación del Acoplamiento Molecular , Talina/química , Proteínas Supresoras de Tumor/química , Animales , Sitios de Unión , Línea Celular Tumoral , Proteínas Activadoras de GTPasa/metabolismo , Células HEK293 , Humanos , Ratones , Unión Proteica , Talina/metabolismo , Proteínas Supresoras de Tumor/metabolismo
11.
Nat Commun ; 6: 10038, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26634421

RESUMEN

The link between extracellular-matrix-bound integrins and intracellular F-actin is essential for cell spreading and migration. Here, we demonstrate how the actin-binding proteins talin and vinculin cooperate to provide this link. By expressing structure-based talin mutants in talin null cells, we show that while the C-terminal actin-binding site (ABS3) in talin is required for adhesion complex assembly, the central ABS2 is essential for focal adhesion (FA) maturation. Thus, although ABS2 mutants support cell spreading, the cells lack FAs, fail to polarize and exert reduced force on the surrounding matrix. ABS2 is inhibited by the preceding mechanosensitive vinculin-binding R3 domain, and deletion of R2R3 or expression of constitutively active vinculin generates stable force-independent FAs, although cell polarity is compromised. Our data suggest a model whereby force acting on integrin-talin complexes via ABS3 promotes R3 unfolding and vinculin binding, activating ABS2 and locking talin into an actin-binding configuration that stabilizes FAs.


Asunto(s)
Actomiosina/metabolismo , Talina/metabolismo , Vinculina/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actomiosina/genética , Animales , Polaridad Celular , Adhesiones Focales/química , Adhesiones Focales/genética , Adhesiones Focales/metabolismo , Ratones , Células 3T3 NIH , Unión Proteica , Estructura Terciaria de Proteína , Talina/química , Talina/genética , Vinculina/química , Vinculina/genética
12.
J Struct Biol ; 184(1): 21-32, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23726984

RESUMEN

Talin is a large adaptor protein that activates integrins and couples them to cytoskeletal actin. Talin contains an N-terminal FERM (band 4.1, ezrin, radixin, moesin) domain (the head) linked to a flexible rod comprised of 13 amphipathic helical bundles (R1-R13) that terminate in a C-terminal helix (DD) that forms an anti-parallel dimer. We derived a three-dimensional structural model of full-length talin at a resolution of approximately 2.5nm using EM reconstruction of full-length talin and the known shapes of the individual domains and inter-domain angles as derived from small angle X-ray scattering. Talin adopts a compact conformation consistent with a dimer in which the two talin rods form a donut-shaped structure, with the two talin heads packed side by side occupying the hole at the center of this donut. In this configuration, the integrin binding site in the head domain and the actin-binding site at the carboxy-terminus of the rod are masked, implying that talin must unravel before it can support integrin activation and engage the actin cytoskeleton.


Asunto(s)
Talina/química , Talina/metabolismo , Actinas/química , Actinas/metabolismo , Sitios de Unión , Citoesqueleto/química , Citoesqueleto/metabolismo , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
13.
J Biol Chem ; 288(12): 8238-8249, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23389036

RESUMEN

Talin activates integrins, couples them to F-actin, and recruits vinculin to focal adhesions (FAs). Here, we report the structural characterization of the talin rod: 13 helical bundles (R1-R13) organized into a compact cluster of four-helix bundles (R2-R4) within a linear chain of five-helix bundles. Nine of the bundles contain vinculin-binding sites (VBS); R2R3 are atypical, with each containing two VBS. Talin R2R3 also binds synergistically to RIAM, a Rap1 effector involved in integrin activation. Biochemical and structural data show that vinculin and RIAM binding to R2R3 is mutually exclusive. Moreover, vinculin binding requires domain unfolding, whereas RIAM binds the folded R2R3 double domain. In cells, RIAM is enriched in nascent adhesions at the leading edge whereas vinculin is enriched in FAs. We propose a model in which RIAM binding to R2R3 initially recruits talin to membranes where it activates integrins. As talin engages F-actin, force exerted on R2R3 disrupts RIAM binding and exposes the VBS, which recruit vinculin to stabilize the complex.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Adhesiones Focales/metabolismo , Proteínas de la Membrana/química , Talina/química , Vinculina/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Unión Competitiva , Cristalografía por Rayos X , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Talina/metabolismo , Vinculina/metabolismo
14.
Structure ; 20(4): 654-66, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22483112

RESUMEN

Filament assembly of nonmuscle myosin IIA (NMIIA) is selectively regulated by the small Ca²âº-binding protein, S100A4, which causes enhanced cell migration and metastasis in certain cancers. Our NMR structure shows that an S100A4 dimer binds to a single myosin heavy chain in an asymmetrical configuration. NMIIA in the complex forms a continuous helix that stretches across the surface of S100A4 and engages the Ca²âº-dependent binding sites of each subunit in the dimer. Synergy between these sites leads to a very tight association (K(D) ∼1 nM) that is unique in the S100 family. Single-residue mutations that remove this synergy weaken binding and ameliorate the effects of S100A4 on NMIIA filament assembly and cell spreading in A431 human epithelial carcinoma cells. We propose a model for NMIIA filament disassembly by S100A4 in which initial binding to the unstructured NMIIA tail initiates unzipping of the coiled coil and disruption of filament packing.


Asunto(s)
Calcio/química , Citoesqueleto/metabolismo , Células Epiteliales/metabolismo , Miosina Tipo IIA no Muscular/química , Proteínas S100/química , Secuencia de Aminoácidos , Sitios de Unión , Calcio/metabolismo , Línea Celular Tumoral , Movimiento Celular , Células Epiteliales/patología , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Resonancia Magnética Nuclear Biomolecular , Mutación Puntual , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Unión al Calcio S100A4 , Proteínas S100/genética , Proteínas S100/metabolismo , Termodinámica
15.
J Biol Chem ; 287(10): 6979-90, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22235127

RESUMEN

The activation of heterodimeric integrin adhesion receptors from low to high affinity states occurs in response to intracellular signals that act on the short cytoplasmic tails of integrin ß subunits. Binding of the talin FERM (four-point-one, ezrin, radixin, moesin) domain to the integrin ß tail provides one key activation signal, but recent data indicate that the kindlin family of FERM domain proteins also play a central role. Kindlins directly bind integrin ß subunit cytoplasmic domains at a site distinct from the talin-binding site, and target to focal adhesions in adherent cells. However, the mechanisms by which kindlins impact integrin activation remain largely unknown. A notable feature of kindlins is their similarity to the integrin-binding and activating talin FERM domain. Drawing on this similarity, here we report the identification of an unstructured insert in the kindlin F1 FERM domain, and provide evidence that a highly conserved polylysine motif in this loop supports binding to negatively charged phospholipid head groups. We further show that the F1 loop and its membrane-binding motif are required for kindlin-1 targeting to focal adhesions, and for the cooperation between kindlin-1 and -2 and the talin head in αIIbß3 integrin activation, but not for kindlin binding to integrin ß tails. These studies highlight the structural and functional similarities between kindlins and the talin head and indicate that as for talin, FERM domain interactions with acidic membrane phospholipids as well ß-integrin tails contribute to the ability of kindlins to activate integrins.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , Adhesiones Focales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo , Proteínas de Neoplasias/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Secuencias de Aminoácidos , Animales , Células CHO , Proteínas Portadoras/genética , Adhesión Celular/fisiología , Cricetinae , Cricetulus , Proteínas del Citoesqueleto/genética , Adhesiones Focales/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Proteínas Musculares/genética , Proteínas de Neoplasias/genética , Fosfolípidos/genética , Fosfolípidos/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , Estructura Terciaria de Proteína , Talina/genética , Talina/metabolismo
16.
FEBS Lett ; 585(21): 3385-90, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-22001210

RESUMEN

USP4, 11 and 15 are three closely related paralogues of the ubiquitin specific protease (USP) family of deubiquitinating enzymes. The DUSP domain and the UBL domain in these proteins are juxtaposed which may provide a functional unit conferring specificity. We determined the structures of the USP15 DUSP-UBL double domain unit in monomeric and dimeric states. We then conducted comparative analysis of the structural and physical properties of all three DUSP-UBL units. We identified structural features that dictate different dispositions between constituent domains, which in turn may influence respective binding properties.


Asunto(s)
Endopeptidasas/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Endopeptidasas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Tioléster Hidrolasas/química , Tioléster Hidrolasas/metabolismo , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/metabolismo , Proteasas Ubiquitina-Específicas
17.
Biochim Biophys Acta ; 1808(4): 1021-31, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21130070

RESUMEN

Phospholemman (PLM) is a single-span transmembrane protein belonging to the FXYD family of proteins. PLM (or FXYD1) regulates the Na,K-ATPase (NKA) ion pump by altering its affinity for K(+) and Na(+) and by reducing its hydrolytic activity. Structural studies of PLM in anionic detergent micelles have suggested that the cytoplasmic domain, which alone can regulate NKA, forms a partial helix which is stabilized by interactions with the charged membrane surface. This work examines the membrane affinity and regulatory function of a 35-amino acid peptide (PLM(38-72)) representing the PLM cytoplasmic domain. Isothermal titration calorimetry and solid-state NMR measurements confirm that PLM(38-72) associates strongly with highly anionic phospholipid membranes, but the association is weakened substantially when the negative surface charge is reduced to a more physiologically relevant environment. Membrane interactions are also weakened when the peptide is phosphorylated at S68, one of the substrate sites for protein kinases. PLM(38-72) also lowers the maximal velocity of ATP hydrolysis (V(max)) by NKA, and phosphorylation of the peptide at S68 gives rise to a partial recovery of V(max). These results suggest that the PLM cytoplasmic domain populates NKA-associated and membrane-associated states in dynamic equilibrium and that phosphorylation may alter the position of the equilibrium. Interestingly, peptides representing the cytoplasmic domains of two other FXYD proteins, Mat-8 (FXYD3) and CHIF (FXYD4), have little or no interaction with highly anionic phospholipid membranes and have no effect on NKA function. This suggests that the functional and physical properties of PLM are not conserved across the entire FXYD family.


Asunto(s)
Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , Fosfoproteínas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Unión Competitiva , Calorimetría , Membrana Celular/química , Membrana Celular/metabolismo , Dicroismo Circular , Humanos , Cinética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fragmentos de Péptidos/química , Fosfolípidos/química , Fosfolípidos/metabolismo , Fosfoproteínas/química , Fosforilación , Potasio/metabolismo , Unión Proteica , Serina/metabolismo , Sodio/metabolismo
18.
J Mol Biol ; 405(4): 1004-26, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21110983

RESUMEN

The interaction between the calcium-binding protein S100A4 and the C-terminal fragments of nonmuscle myosin heavy chain IIA has been studied by equilibrium and kinetic methods. Using site-directed mutants, we conclude that Ca(2+) binds to the EF2 domain of S100A4 with micromolar affinity and that the K(d) value for Ca(2+) is reduced by several orders of magnitude in the presence of myosin target fragments. The reduction in K(d) results from a reduced dissociation rate constant (from 16 s(-1) to 0.3 s(-1) in the presence of coiled-coil fragments) and an increased association rate constant. Using peptide competition assays and NMR spectroscopy, we conclude that the minimal binding site on myosin heavy chain IIA corresponds to A1907-G1938; therefore, the site extends beyond the end of the coiled-coil region of myosin. Electron microscopy and turbidity assays were used to assess myosin fragment filament disassembly by S100A4. The latter assay demonstrated that S100A4 binds to the filaments and actively promotes disassembly rather than just binding to the myosin monomer and displacing the equilibrium. Quantitative modelling of these in vitro data suggests that S100A4 concentrations in the micromolar region could disassemble myosin filaments even at resting levels of cytoplasmic [Ca(2+)]. However, for Ca(2+) transients to be effective in further promoting dissociation, the elevated Ca(2+) signal must persist for tens of seconds. Fluorescence recovery after photobleaching of A431/SIP1 cells expressing green fluorescent protein-myosin IIA, immobilised on fibronectin micropatterns to control stress fibre location, yielded a recovery time constant of around 20 s, consistent with in vitro data.


Asunto(s)
Calcio/metabolismo , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN/genética , Humanos , Técnicas In Vitro , Cinética , Microscopía Electrónica , Proteínas Motoras Moleculares/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Cadenas Pesadas de Miosina/genética , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Unión al Calcio S100A4 , Proteínas S100/genética
19.
Structure ; 18(10): 1289-99, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20947018

RESUMEN

FERM domains are found in a diverse superfamily of signaling and adaptor proteins at membrane interfaces. They typically consist of three separately folded domains (F1, F2, F3) in a compact cloverleaf structure. The crystal structure of the N-terminal head of the integrin-associated cytoskeletal protein talin reported here reveals a novel FERM domain with a linear domain arrangement, plus an additional domain F0 packed against F1. While F3 binds ß-integrin tails, basic residues in F1 and F2 are required for membrane association and for integrin activation. We show that these same residues are also required for cell spreading and focal adhesion assembly in cells. We suggest that the extended conformation of the talin head allows simultaneous binding to integrins via F3 and to PtdIns(4,5)P2-enriched microdomains via basic residues distributed along one surface of the talin head, and that these multiple interactions are required to stabilize integrins in the activated state.


Asunto(s)
Conformación Proteica , Estructura Terciaria de Proteína , Talina/química , Animales , Sitios de Unión/genética , Línea Celular , Cristalización , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cadenas beta de Integrinas/química , Cadenas beta de Integrinas/metabolismo , Ratones , Microscopía Fluorescente , Modelos Moleculares , Mutación , Unión Proteica , Interferencia de ARN , Dispersión del Ángulo Pequeño , Talina/genética , Talina/metabolismo , Difracción de Rayos X
20.
J Biol Chem ; 285(38): 29577-87, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20610383

RESUMEN

Talin is an adaptor protein that couples integrins to F-actin. Structural studies show that the N-terminal talin head contains an atypical FERM domain, whereas the N- and C-terminal parts of the talin rod include a series of α-helical bundles. However, determining the structure of the central part of the rod has proved problematic. Residues 1359-1659 are homologous to the MESDc1 gene product, and we therefore expressed this region of talin in Escherichia coli. The crystal structure shows a unique fold comprised of a 5- and 4-helix bundle. The 5-helix bundle is composed of nonsequential helices due to insertion of the 4-helix bundle into the loop at the C terminus of helix α3. The linker connecting the bundles forms a two-stranded anti-parallel ß-sheet likely limiting the relative movement of the two bundles. Because the 5-helix bundle contains the N and C termini of this module, we propose that it is linked by short loops to adjacent bundles, whereas the 4-helix bundle protrudes from the rod. This suggests the 4-helix bundle has a unique role, and its pI (7.8) is higher than other rod domains. Both helical bundles contain vinculin-binding sites but that in the isolated 5-helix bundle is cryptic, whereas that in the isolated 4-helix bundle is constitutively active. In contrast, both bundles are required for actin binding. Finally, we show that the MESDc1 protein, which is predicted to have a similar fold, is a novel actin-binding protein.


Asunto(s)
Actinas/química , Actinas/metabolismo , Talina/química , Talina/metabolismo , Vinculina/química , Vinculina/metabolismo , Actinas/genética , Animales , Sitios de Unión , Pollos , Dicroismo Circular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Ratones , Células 3T3 NIH , Unión Proteica/genética , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Talina/genética , Vinculina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...