Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Ecol Evol ; 39(2): 152-164, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37816662

RESUMEN

Carrion decomposition is fundamental to nutrient cycling in terrestrial ecosystems because it provides a high-quality resource to diverse organisms. A conceptual framework incorporating all phases of carrion decomposition with the full community of scavengers is needed to predict the effects of global change on core ecosystem processes. Because global change can differentially impact scavenger guilds and rates of carrion decomposition, our framework explicitly incorporates complex interactions among microbial, invertebrate, and vertebrate scavenger communities across three distinct phases of carcass decomposition. We hypothesize that carrion decomposition rates will be the most impacted when global change affects carcass discovery rates and the foraging behavior of competing scavenger guilds.


Asunto(s)
Ecosistema , Vertebrados , Animales , Peces
2.
Trends Ecol Evol ; 38(4): 324-336, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36402653

RESUMEN

Animals are facing novel 'timescapes' in which the stimuli entraining their daily activity patterns no longer match historical conditions due to anthropogenic disturbance. However, the ecological effects (e.g., altered physiology, species interactions) of novel activity timing are virtually unknown. We reviewed 1328 studies and found relatively few focusing on anthropogenic effects on activity timing. We suggest three hypotheses to stimulate future research: (i) activity-timing mismatches determine ecological effects, (ii) duration and timing of timescape modification influence effects, and (iii) consequences of altered activity timing vary biogeographically due to broad-scale variation in factors compressing timescapes. The continued growth of sampling technologies promises to facilitate the study of the consequences of altered activity timing, with emerging applications for biodiversity conservation.


Asunto(s)
Biodiversidad , Ecosistema , Animales
3.
Ecol Lett ; 25(5): 1094-1109, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35235713

RESUMEN

Seed dispersal directly affects plant establishment, gene flow and fitness. Understanding patterns in seed dispersal is, therefore, fundamental to understanding plant ecology and evolution, as well as addressing challenges of extinction and global change. Our ability to understand dispersal is limited because seeds may be dispersed by multiple agents, and the effectiveness of these agents can be highly variable both among and within species. We provide a novel framework that links seed dispersal to animal social status, a key component of behaviour. Because social status affects individual resource access and movement, it provides a critical link to two factors that determine seed dispersal: the quantity of seeds dispersed and the spatial patterns of dispersal. Social status may have unappreciated effects on post-dispersal seed survival and recruitment when social status affects individual habitat use. Hence, environmental changes, such as selective harvesting and urbanisation, that affect animal social structure may have unappreciated consequences for seed dispersal. This framework highlights these exciting new hypotheses linking environmental change, social structure and seed dispersal. By outlining experimental approaches to test these hypotheses, we hope to facilitate studies across a wide diversity of plant-animal networks, which may uncover emerging hotspots or significant declines in seed dispersal.


Asunto(s)
Dispersión de Semillas , Animales , Ecosistema , Semillas , Estatus Social , Vertebrados
4.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33875596

RESUMEN

Ecological restoration is a global priority, with potential to reverse biodiversity declines and promote ecosystem functioning. Yet, successful restoration is challenged by lingering legacies of past land-use activities, which are pervasive on lands available for restoration. Although legacies can persist for centuries following cessation of human land uses such as agriculture, we currently lack understanding of how land-use legacies affect entire ecosystems, how they influence restoration outcomes, or whether restoration can mitigate legacy effects. Using a large-scale experiment, we evaluated how restoration by tree thinning and land-use legacies from prior cultivation and subsequent conversion to pine plantations affect fire-suppressed longleaf pine savannas. We evaluated 45 ecological properties across four categories: 1) abiotic attributes, 2) organism abundances, 3) species diversity, and 4) species interactions. The effects of restoration and land-use legacies were pervasive, shaping all categories of properties, with restoration effects roughly twice the magnitude of legacy effects. Restoration effects were of comparable magnitude in savannas with and without a history of intensive human land use; however, restoration did not mitigate numerous legacy effects present prior to restoration. As a result, savannas with a history of intensive human land use supported altered properties, especially related to soils, even after restoration. The signature of past human land-use activities can be remarkably persistent in the face of intensive restoration, influencing the outcome of restoration across diverse ecological properties. Understanding and mitigating land-use legacies will maximize the potential to restore degraded ecosystems.


Asunto(s)
Agricultura/tendencias , Restauración y Remediación Ambiental/métodos , Biodiversidad , Ecosistema , Pradera , Humanos , Pinus/crecimiento & desarrollo , Dinámica Poblacional , Suelo/química , Estrés Fisiológico , Árboles/crecimiento & desarrollo
5.
Trends Ecol Evol ; 34(7): 616-627, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30902358

RESUMEN

Ecological novelty, when conditions deviate from a historical baseline, is increasingly common as humans modify habitats and communities across the globe. Our ability to anticipate how novelty changes predator-prey interactions will likely hinge upon the explicit evaluation of multiple forms of novelty, rather than a focus on single forms of novelty (e.g., invasive predators or climate change). We provide a framework to assess how multiple forms of novelty can act, alone or in concert, on components shared by all predator-prey interactions (the predation sequence). Considering how novelty acts throughout the predation sequence could improve our understanding of predator-prey interactions in an increasingly novel world, identify important knowledge gaps, and guide conservation decisions in the Anthropocene.


Asunto(s)
Ecosistema , Conducta Predatoria , Animales , Ecología , Cadena Alimentaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...