Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nature ; 614(7947): 256-261, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36653456

RESUMEN

Fluctuations and stochastic transitions are ubiquitous in nanometre-scale systems, especially in the presence of disorder. However, their direct observation has so far been impeded by a seemingly fundamental, signal-limited compromise between spatial and temporal resolution. Here we develop coherent correlation imaging (CCI) to overcome this dilemma. Our method begins by classifying recorded camera frames in Fourier space. Contrast and spatial resolution emerge by averaging selectively over same-state frames. Temporal resolution down to the acquisition time of a single frame arises independently from an exceptionally low misclassification rate, which we achieve by combining a correlation-based similarity metric1,2 with a modified, iterative hierarchical clustering algorithm3,4. We apply CCI to study previously inaccessible magnetic fluctuations in a highly degenerate magnetic stripe domain state with nanometre-scale resolution. We uncover an intricate network of transitions between more than 30 discrete states. Our spatiotemporal data enable us to reconstruct the pinning energy landscape and to thereby explain the dynamics observed on a microscopic level. CCI massively expands the potential of emerging high-coherence X-ray sources and paves the way for addressing large fundamental questions such as the contribution of pinning5-8 and topology9-12 in phase transitions and the role of spin and charge order fluctuations in high-temperature superconductivity13,14.

3.
Nano Lett ; 21(12): 4966-4972, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34100623

RESUMEN

Magnetic microscopy that combines nanoscale spatial resolution with picosecond scale temporal resolution uniquely enables direct observation of the spatiotemporal magnetic phenomena that are relevant to future high-speed, high-density magnetic storage and logic technologies. Magnetic microscopes that combine these metrics has been limited to facility-level instruments. To address this gap in lab-accessible spatiotemporal imaging, we develop a time-resolved near-field magnetic microscope based on magnetothermal interactions. We demonstrate both magnetization and current density imaging modalities, each with spatial resolution that far surpasses the optical diffraction limit. In addition, we study the near-field and time-resolved characteristics of our signal and find that our instrument possesses a spatial resolution on the scale of 100 nm and a temporal resolution below 100 ps. Our results demonstrate an accessible and comparatively low-cost approach to nanoscale spatiotemporal magnetic microscopy in a table-top form to aid the science and technology of dynamic magnetic devices with complex spin textures.


Asunto(s)
Microscopía de Sonda de Barrido , Nanotecnología , Microscopía de Fuerza Atómica
4.
Adv Mater ; 32(22): e2001080, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32319146

RESUMEN

The ability to make controlled patterns of magnetic structures within a nonmagnetic background is essential for several types of existing and proposed technologies. Such patterns provide the foundation of magnetic memory and logic devices, allow the creation of artificial spin-ice lattices, and enable the study of magnon propagation. Here, a novel approach for magnetic patterning that allows repeated creation and erasure of arbitrary shapes of thin-film ferromagnetic structures is reported. This strategy is enabled by epitaxial Fe0.52 Rh0.48 thin films designed so that both ferromagnetic and antiferromagnetic phases are bistable at room temperature. Starting with the film in a uniform antiferromagnetic state, the ability to write arbitrary patterns of the ferromagnetic phase is demonstrated by local heating with a focused laser. If desired, the results can then be erased by cooling below room temperature and the material repeatedly re-patterned.

5.
Phys Rev Lett ; 109(8): 087201, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-23002770

RESUMEN

We have studied frustrated kagome arrays and unfrustrated honeycomb arrays of magnetostatically interacting single-domain ferromagnetic islands with magnetization normal to the plane. The measured pairwise spin correlations of both lattices can be reproduced by models based solely on nearest-neighbor correlations. The kagome array has qualitatively different magnetostatics but identical lattice topology to previously studied artificial spin ice systems composed of in-plane moments. The two systems show striking similarities in the development of moment pair correlations, demonstrating a universality in artificial spin ice behavior independent of specific realization in a particular material system.

6.
Phys Rev Lett ; 107(11): 117204, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-22026700

RESUMEN

We have studied the moment correlations within triangular lattice arrays of single-domain coaligned nanoscale ferromagnetic islands. Independent variation of lattice spacing along and perpendicular to the island axis tunes the magnetostatic interactions between islands through a broad range of relative strengths. For certain lattice parameters, the sign of the correlations between near-neighbor island moments is opposite to that favored by the pairwise interaction. This finding, supported by analysis of the total correlation in terms of direct and convoluted indirect contributions across multiple pairwise interactions, indicates that indirect interactions and/or those mediated by further neighbors can be tuned to be dominant, with implications for the wide range of systems composed of interacting nanomagnets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...