Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chest ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38403186

RESUMEN

BACKGROUND: Electromagnetic stimulation of the phrenic nerve induces diaphragm contractions, but no coils for clinical use have been available. We recently demonstrated the feasibility of ventilation using bilateral transcutaneous noninvasive electromagnetic phrenic nerve stimulation (NEPNS) before surgery in lung-healthy patients with healthy weight in a dose-dependent manner. RESEARCH QUESTION: Is NEPNS feasible in critically ill patients in an ICU setting? STUDY DESIGN AND METHODS: This feasibility nonrandomized controlled study aimed to enroll patients within 36 h of intubation who were expected to remain ventilated for ≥ 72 h. The intervention group received 15-min bilateral transcutaneous NEPNS bid, whereas the control group received standard care. If sufficient, NEPNS was used without pressure support to ventilate the patient; pressure support was added if necessary to ventilate the patient adequately. The primary outcome was feasibility, measured as time to find the optimal stimulation position. Further end points were sessions performed according to the protocol or allowing a next-day catch-up session and tidal volume achieved with stimulation reaching only 3 to 6 mL/kg ideal body weight (IBW). A secondary end point was expiratory diaphragm thickness measured with ultrasound from days 1 to 10 (or extubation). RESULTS: The revised European Union regulation mandated reapproval of medical devices, prematurely halting the study. Eleven patients (five in the intervention group, six in the control group) were enrolled. The median time to find an adequate stimulation position was 23 s (interquartile range, 12-62 s). The intervention bid was executed in 87% of patients, and 92% of patients including a next-day catch-up session. Ventilation with 3 to 6 mL/kg IBW was achieved in 732 of 1,701 stimulations (43.0%) with stimulation only and in 2,511 of 4,036 stimulations (62.2%) with additional pressure support. A decrease in diaphragm thickness was prevented by bilateral NEPNS (P = .034) until day 10. INTERPRETATION: Bilateral transcutaneous NEPNS was feasible in the ICU setting with the potential benefit of preventing diaphragm atrophy during mechanical ventilation. NEPNS ventilation effectiveness needs further assessment. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT05238753; URL: www. CLINICALTRIALS: gov.

2.
Eur J Phys Rehabil Med ; 59(6): 772-781, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38214045

RESUMEN

INTRODUCTION: Mechanical ventilation (MV) is a lifesaving procedure for critically ill patients. Diaphragm activation and stimulation may counteract side effects, such as ventilator-induced diaphragm dysfunction (VIDD). The effects of stimulation on diaphragm atrophy and patient outcomes are reported in this systematic review. EVIDENCE ACQUISITION: Studies investigating diaphragmatic stimulation versus standard of care in critically ill patients and evaluating clinical outcomes were extracted from a Medline database last on January 23, 2023, after registration in Prospero (CRD42021259353). Selected studies included the investigation of diaphragmatic stimulation versus standard of care in critically ill patients, an evaluation of the clinical outcomes. These included muscle atrophy, VIDD, weaning failure, mortality, quality of life, ventilation time, diaphragmatic function, length of stay in the Intensive Care Unit (ICU), and length of hospital stay. All articles were independently evaluated by two reviewers according to their abstract and title and, secondly, a full texts evaluation by two independent reviewers was performed. To resolve diverging evaluations, a third reviewer was consulted to reach a final decision. Data were extracted by the reviewers following the Oxford 2011 levels of evidence guidelines and summarized accordingly. EVIDENCE SYNTHESIS: Seven studies were extracted and descriptively synthesized, since a metanalysis was not feasible. Patients undergoing diaphragm stimulation had moderate evidence of higher maximal inspiratory pressure (MIP), less atrophy, less mitochondrial respiratory dysfunction, less oxidative stress, less molecular atrophy, shorter MV time, shorter ICU length of stay, longer survival, and better SF-36 scores than control. CONCLUSIONS: Evidence of the molecular and histological benefits of diaphragmatic stimulation is limited. The results indicate positive clinical effects of diaphragm activation with a moderate level of evidence for MIP and a low level of evidence for other outcomes. Diaphragm activation could be a therapeutic solution to avoid diaphragm atrophy, accelerate weaning, shorten MV time, and counteract VIDD; however, better-powered studies are needed to increase the level of evidence.


Asunto(s)
Enfermedad Crítica , Diafragma , Humanos , Diafragma/patología , Calidad de Vida , Ventiladores Mecánicos/efectos adversos , Respiración Artificial/efectos adversos , Atrofia Muscular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA