Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 136(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37013443

RESUMEN

Calcineurin, or protein phosphatase 2B (PP2B), the Ca2+ and calmodulin-activated phosphatase and target of immunosuppressants, has many substrates and functions that remain uncharacterized. By combining rapid proximity-dependent labeling with cell cycle synchronization, we mapped the spatial distribution of calcineurin in different cell cycle stages. While calcineurin-proximal proteins did not vary significantly between interphase and mitosis, calcineurin consistently associated with multiple centrosomal and/or ciliary proteins. These include POC5, which binds centrins in a Ca2+-dependent manner and is a component of the luminal scaffold that stabilizes centrioles. We show that POC5 contains a calcineurin substrate motif (PxIxIT type) that mediates calcineurin binding in vivo and in vitro. Using indirect immunofluorescence and ultrastructure expansion microscopy, we demonstrate that calcineurin colocalizes with POC5 at the centriole, and further show that calcineurin inhibitors alter POC5 distribution within the centriole lumen. Our discovery that calcineurin directly associates with centriolar proteins highlights a role for Ca2+ and calcineurin signaling at these organelles. Calcineurin inhibition promotes elongation of primary cilia without affecting ciliogenesis. Thus, Ca2+ signaling within cilia includes previously unknown functions for calcineurin in maintenance of cilia length, a process that is frequently disrupted in ciliopathies.


Asunto(s)
Calcineurina , Cilios , Calcineurina/metabolismo , Cilios/metabolismo , Calcio/metabolismo , Centrosoma/metabolismo , Centriolos/metabolismo , Proteínas/metabolismo
2.
Cell Syst ; 10(3): 254-264.e9, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32191875

RESUMEN

Half of the bacteria in the human gut microbiome are lysogens containing integrated prophages, which may activate in stressful immune environments. Although lysogens are likely to be phagocytosed by macrophages, whether prophage activation occurs or influences the outcome of bacterial infection remains unexplored. To study the dynamics of bacteria-phage interactions in living cells-in particular, the macrophage-triggered induction and lysis of dormant prophages in the phagosome-we adopted a tripartite system where murine macrophages engulf E. coli, which are lysogenic with an engineered bacteriophage λ, containing a fluorescent lysis reporter. Pre-induced prophages are capable of lysing the host bacterium and propagating infection to neighboring bacteria in the same phagosome. A non-canonical pathway, mediated by PhoP, is involved with the native λ phage induction inside phagocytosed E. coli. These findings suggest two possible mechanisms by which induced prophages may function to aid the bactericidal activity of macrophages.


Asunto(s)
Lisogenia/fisiología , Imagen Molecular/métodos , Activación Viral/fisiología , Animales , Bacterias , Bacteriófago lambda/fisiología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Microbioma Gastrointestinal , Ingeniería Genética/métodos , Células HEK293 , Humanos , Macrófagos/metabolismo , Ratones , Profagos/metabolismo , Profagos/fisiología , Células RAW 264.7
3.
PLoS One ; 13(10): e0204957, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30304739

RESUMEN

Epithelial cell adhesion molecule (EpCAM) is a glycoprotein on the surface of epithelial cells that is essential for intestinal epithelial integrity and expressed at high levels in many epithelial derived cancers and circulating tumor cells. Here we show the effect of EpCAM levels on migration of Madin-Darby-Canine Kidney (MDCK) epithelial cells. MDCK cells depleted of EpCAM show increased activation of extracellular signal-regulated kinase (ERK) and of myosin, and increased cell spreading and epithelial sheet migration into a gap. In contrast, over-expression of EpCAM inhibits ERK and myosin activation, and slows epithelial sheet migration. Loss of EpCAM is rescued by EpCAM-YFP mutated in the extracellular domain required for cis-dimerization whereas EpCAM-YFP with a mutation that inhibits Claudin-7 interaction cannot rescue increased ERK, myosin activation, and increased migration in EpCAM-depleted cells. In summary, these results indicate that interaction of EpCAM and Claudin-7 at the cell surface negatively regulates epithelial migration by inhibiting ERK and actomyosin contractility.


Asunto(s)
Adhesión Celular/fisiología , Claudinas/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Actinas/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Claudinas/química , Dimerización , Perros , Molécula de Adhesión Celular Epitelial/antagonistas & inhibidores , Molécula de Adhesión Celular Epitelial/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor de Crecimiento de Hepatocito/farmacología , Células de Riñón Canino Madin Darby/citología , Células de Riñón Canino Madin Darby/metabolismo , Microscopía Confocal , Miosinas/antagonistas & inhibidores , Miosinas/metabolismo , Fosforilación/efectos de los fármacos , Dominios Proteicos , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Imagen de Lapso de Tiempo
4.
Mol Biol Cell ; 25(7): 977-91, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24501426

RESUMEN

ß-Catenin is a multifunctional protein with critical roles in cell-cell adhesion, Wnt signaling, and the centrosome cycle. Whereas the regulation of ß-catenin in cell-cell adhesion and Wnt signaling are well understood, how ß-catenin is regulated at the centrosome is not. NIMA-related protein kinase 2 (Nek2), which regulates centrosome disjunction/splitting, binds to and phosphorylates ß-catenin. Using in vitro and cell-based assays, we show that Nek2 phosphorylates the same regulatory sites in the N-terminus of ß-catenin as glycogen synthase kinase 3ß (GSK3ß), which are recognized by a specific phospho-S33/S37/T41 antibody, as well as additional sites. Nek2 binding to ß-catenin appears to inhibit binding of the E3 ligase ß-TrCP and prevents ß-catenin ubiquitination and degradation. Thus ß-catenin phosphorylated by Nek2 is stabilized and accumulates at centrosomes in mitosis. We further show that polo-like kinase 1 (Plk1) regulates Nek2 phosphorylation and stabilization of ß-catenin. Taken together, these results identify a novel mechanism for regulating ß-catenin stability that is independent of GSK3ß and provide new insight into a pathway involving Plk1, Nek2, and ß-catenin that regulates the centrosome cycle.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , beta Catenina/metabolismo , Quinasa de la Caseína I/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células HCT116 , Células HEK293 , Humanos , Quinasas Relacionadas con NIMA , Fosforilación , Estabilidad Proteica , Eliminación de Secuencia , Serina/metabolismo , Huso Acromático/metabolismo , Quinasa Tipo Polo 1
5.
J Cell Sci ; 125(Pt 5): 1247-58, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22399805

RESUMEN

Regulation of the microtubule- and actin-binding protein adenomatous polyposis coli (APC) is crucial for the formation of cell extensions in many cell types. This process requires inhibition of glycogen synthase kinase-3ß (GSK-3ß), which otherwise phosphorylates APC and decreases APC-mediated microtubule bundling. Although it is assumed, therefore, that APC phosphorylation is decreased during initiation of cell extensions, the phosphorylation state of APC has never been analyzed directly. We show here that NGF- and EGF-induced initial cell extensions result in APC phosphorylation by the MAPK/ERK pathway, which, in parallel with inhibition of GSK-3ß, promotes localization of APC to the tip of cell extensions. Whereas GSK-3ß inhibition promotes APC binding and stabilization of microtubules, we show that phosphorylation by ERK inhibits the interaction of APC with F-actin, and APC-mediated F-actin bundling, but not APC-mediated microtubule bundling, in vitro. These results identify a previously unknown APC regulatory pathway during growth-factor-induced cell extension, and indicate that the GSK-3ß and ERK pathways act in parallel to regulate interactions between APC and the cytoskeleton during the formation of cell extensions.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Extensiones de la Superficie Celular/fisiología , Citoesqueleto/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Actinas/metabolismo , Animales , Proteínas del Citoesqueleto/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Microtúbulos/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Células PC12 , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño , Ratas , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo
6.
J Cell Sci ; 123(Pt 18): 3125-35, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20736306

RESUMEN

beta-Catenin has important roles in cell-cell adhesion and in the regulation of gene transcription. Mutations that stabilize beta-catenin are common in cancer, but it remains unclear how these mutations contribute to cancer progression. beta-Catenin is also a centrosomal component involved in centrosome separation. Centrosomes nucleate interphase microtubules and the bipolar mitotic spindle in normal cells, but their organization and function in human cancers are abnormal. Here, we show that expression of stabilized mutant beta-catenin, which mimics mutations found in cancer, results in extra non-microtubule nucleating structures that contain a subset of centrosome proteins including gamma-tubulin and centrin, but not polo-like kinase 4 (Plk4), SAS-6 or pericentrin. A transcriptionally inactive form of beta-catenin also gives rise to abnormal structures of centrosome proteins. HCT116 human colon cancer cell lines, from which the mutant beta-catenin allele has been deleted, have reduced numbers of cells with abnormal centrosome structures and S-phase-arrested, amplified centrosomes. RNAi-mediated depletion of beta-catenin from centrosomes inhibits S-phase-arrested amplification of centrosomes. These results indicate that beta-catenin is required for centrosome amplification, and mutations in beta-catenin might contribute to the formation of abnormal centrosomes observed in cancers.


Asunto(s)
Centrosoma/química , Centrosoma/metabolismo , Neoplasias/metabolismo , beta Catenina/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Perros , Humanos , Neoplasias/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , beta Catenina/genética
7.
Adv Exp Med Biol ; 656: 65-74, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19928353

RESUMEN

Adenomatous polyposis coli (APC) is a multifunctional protein commonly mutated in colon cancer. APC contains binding sites for multiple proteins with diverse roles in signaling and the structural and functional organization of cells. Recent evidence suggests roles for APC and some of its binding partners in regulating microtubules in mitosis. APC localizes to three key locations in mitosis: kinetochores, the cortex and centrosomes. Here, we discuss possible mechanisms for APC function at these sites and suggest new pathways by which APC mutations promote tumorigenesis.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/fisiología , Microtúbulos/metabolismo , Mitosis/fisiología , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Drosophila , Genes APC , Humanos , Cinetocoros/metabolismo , Mutación , Saccharomycetales
8.
Semin Cell Dev Biol ; 19(3): 245-51, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18387324

RESUMEN

In response to extracellular signals during embryonic development, cells undergo directional movements to specific sites and establish proper connections to other cells to form organs and tissues. Cell extension and migration in the direction of extracellular cues is mediated by the actin and microtubule cytoskeletons, and recent results have shed new light on how these pathways are activated by neurotrophins, Wnt or extracellular matrix. These signals lead to modifications of microtubule-associated proteins (MAPs) and point to glycogen synthase kinase (GSK) 3beta as a key regulator of microtubule function during directional migration. This review will summarize these results and then focus on the role of microtubule-binding protein adenomatous polyposis coli (APC) in neuronal polarization and directed migration, and on its regulation by GSK3beta.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Movimiento Celular , Polaridad Celular , Microtúbulos/metabolismo , Neuronas/citología , Proteína de la Poliposis Adenomatosa del Colon/química , Animales , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo
9.
Mol Cell Biol ; 28(7): 2283-94, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18212055

RESUMEN

Centrosomes nucleate and organize interphase microtubules and are instrumental in mitotic bipolar spindle assembly, ensuring orderly cell cycle progression with accurate chromosome segregation. We report that the multifunctional structural protein 4.1R localizes at centrosomes to distal/subdistal regions of mature centrioles in a cell cycle-dependent pattern. Significantly, 4.1R-specific depletion mediated by RNA interference perturbs subdistal appendage proteins ninein and outer dense fiber 2/cenexin at mature centrosomes and concomitantly reduces interphase microtubule anchoring and organization. 4.1R depletion causes G(1) accumulation in p53-proficient cells, similar to depletion of many other proteins that compromise centrosome integrity. In p53-deficient cells, 4.1R depletion delays S phase, but aberrant ninein distribution is not dependent on the S-phase delay. In 4.1R-depleted mitotic cells, efficient centrosome separation is reduced, resulting in monopolar spindle formation. Multipolar spindles and bipolar spindles with misaligned chromatin are also induced by 4.1R depletion. Notably, all types of defective spindles have mislocalized NuMA (nuclear mitotic apparatus protein), a 4.1R binding partner essential for spindle pole focusing. These disruptions contribute to lagging chromosomes and aberrant microtubule bridges during anaphase/telophase. Our data provide functional evidence that 4.1R makes crucial contributions to the structural integrity of centrosomes and mitotic spindles which normally enable mitosis and anaphase to proceed with the coordinated precision required to avoid pathological events.


Asunto(s)
Ciclo Celular/fisiología , Centriolos/química , Centrosoma/ultraestructura , Proteínas del Citoesqueleto/fisiología , Proteínas de la Membrana/fisiología , Huso Acromático/ultraestructura , Anafase/fisiología , Antígenos Nucleares/análisis , Proteínas de Ciclo Celular , Línea Celular/ultraestructura , Centrosoma/metabolismo , Segregación Cromosómica/fisiología , Proteínas del Citoesqueleto/análisis , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Regulación hacia Abajo , Células HeLa/ultraestructura , Humanos , Interfase/fisiología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Microtúbulos/ultraestructura , Proteínas Asociadas a Matriz Nuclear/análisis , Proteínas Nucleares/análisis , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Huso Acromático/química , Huso Acromático/metabolismo , Proteína p53 Supresora de Tumor/fisiología
10.
Genes Dev ; 22(1): 91-105, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18086858

RESUMEN

beta-Catenin plays important roles in cell adhesion and gene transcription, and has been shown recently to be essential for the establishment of a bipolar mitotic spindle. Here we show that beta-catenin is a component of interphase centrosomes and that stabilization of beta-catenin, mimicking mutations found in cancers, induces centrosome splitting. Centrosomes are held together by a dynamic linker regulated by Nek2 kinase and its substrates C-Nap1 (centrosomal Nek2-associated protein 1) and Rootletin. We show that beta-catenin binds to and is phosphorylated by Nek2, and is in a complex with Rootletin. In interphase, beta-catenin colocalizes with Rootletin between C-Nap1 puncta at the proximal end of centrioles, and this localization is dependent on C-Nap1 and Rootletin. In mitosis, when Nek2 activity increases, beta-catenin localizes to centrosomes at spindle poles independent of Rootletin. Increased Nek2 activity disrupts the interaction of Rootletin with centrosomes and results in binding of beta-catenin to Rootletin-independent sites on centrosomes, an event that is required for centrosome separation. These results identify beta-catenin as a component of the intercentrosomal linker and define a new function for beta-catenin as a key regulator of mitotic centrosome separation.


Asunto(s)
Centrosoma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , beta Catenina/metabolismo , Animales , Proteínas del Dominio Armadillo/metabolismo , Células Cultivadas , Centrosoma/enzimología , Proteínas del Citoesqueleto/análisis , Proteínas del Citoesqueleto/metabolismo , Perros , Humanos , Interfase , Quinasas Relacionadas con NIMA , Proteínas/análisis , Proteínas/metabolismo , beta Catenina/análisis , ARNt Metiltransferasas
11.
J Cell Sci ; 118(Pt 24): 5699-708, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16303851

RESUMEN

Neuronal morphogenesis involves the initial formation of neurites and then differentiation of neurites into axons and dendrites. The mechanisms underlying neurite formation are poorly understood. A candidate protein for controlling neurite extension is the adenomatous polyposis coli (APC) protein, which regulates membrane extensions, microtubules and beta-catenin-mediated transcription downstream of Wnt signaling. APC is enriched at the tip of several neurites of unpolarized hippocampal neurons and the tip of only the long axon in polarized hippocampal neurons. Significantly, APC localized to the tip of only one neurite, marked by dephospho-tau as the future axon, before that neurite had grown considerably longer than other neurites. To determine whether neurite outgrowth was affected by beta-catenin accumulation and signaling, a stabilized beta-catenin mutant was expressed in PC12 cells, and neurite formation was measured. Stabilized beta-catenin mutants accumulated in APC clusters and inhibited neurite formation and growth. Importantly, these effects were also observed was independently of the gene transcriptional activity of beta-catenin. These results indicate that APC is involved in both early neurite outgrowth and increased growth of the future axon, and that beta-catenin has a structural role in inhibiting APC function in neurite growth.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Hipocampo/metabolismo , Neuritas/metabolismo , Transducción de Señal/fisiología , beta Catenina/metabolismo , Animales , Expresión Génica , Mutación , Células PC12 , Ratas , beta Catenina/genética
12.
J Cell Sci ; 117(Pt 7): 1117-28, 2004 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-14970257

RESUMEN

Adenomatous polyposis coli (APC) and End-binding protein 1 (EB1) localize to centrosomes independently of cytoplasmic microtubules (MTs) and purify with centrosomes from mammalian cell lines. Localization of EB1 to centrosomes is independent of its MT binding domain and is mediated by its C-terminus. Both APC and EB1 preferentially localize to the mother centriole and EB1 forms a cap at the end of the mother centriole that contains the subdistal appendages as defined by epsilon-tubulin localization. Like endogenous APC and EB1, fluorescent protein fusions of APC and EB1 localize preferentially to the mother centriole. Depletion of EB1 by RNA interference reduces MT minus-end anchoring at centrosomes and delays MT regrowth from centrosomes. In summary, our data indicate that APC and EB1 are functional components of mammalian centrosomes and that EB1 is important for anchoring cytoplasmic MT minus ends to the subdistal appendages of the mother centriole.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Centriolos/metabolismo , Centrosoma/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Células COS , Línea Celular , Perros , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Nocodazol/farmacología , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
13.
Bioessays ; 24(9): 771-4, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12210511

RESUMEN

Somatic or inherited mutations in the adenomatous polyposis coli (APC) gene are a frequent cause of colorectal cancer in humans. APC protein has an important tumor suppression function to reduce cellular levels of the signaling protein beta-catenin and, thereby, inhibit beta-catenin and T-cell-factor-mediated gene expression. In addition, APC protein binds to microtubules in vertebrate cells and localizes to actin-rich adherens junctions in epithelial cells of the fruit fly Drosophila (Fig. 1). Very little is known, however, about the function of these cytoskeletal associations. Recently, Hamada and Bienz have described a potential role for Drosophila E-APC in cellular adhesion, which offers new clues to APC function in embryonic development, and potentially colorectal adenoma formation and tumor progression in humans.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Mutación , Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Adhesión Celular , Neoplasias Colorrectales/metabolismo , Drosophila , Humanos , Modelos Biológicos
14.
J Cell Sci ; 115(Pt 8): 1583-90, 2002 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-11950877

RESUMEN

End-binding protein (EB) 1 binds to the C-terminus of adenomatous polyposis coli (APC) protein and to the plus ends of microtubules (MT) and has been implicated in the regulation of APC accumulation in cortical clusters at the tip of extending membranes. We investigated which APC domains are involved in cluster localization and whether binding to EB1 or MTs is essential for APC cluster localization. Armadillo repeats of APC that lack EB1- and MT-binding domains are necessary and sufficient for APC localization in cortical clusters; an APC fragment lacking the armadillo repeats, but containing MT- and EB1-binding domains, does not localize to the cortical clusters but instead co-aligns with MTs throughout the cell. Significantly, analysis of endogenous proteins reveals that EB1 does not accumulate in the APC clusters. However, overexpressed EB1 does accumulate in APC clusters; the APC-binding domain in EB1 is located in the C-terminal region of EB1 between amino acids 134 and 268. Overexpressed APC- or MT-binding domains of EB1 localize to APC cortical clusters and MT, respectively, without affecting APC cluster formation itself. These results show that localization of APC in cortical clusters is different from that of EB1 at MT plus ends and appears to be independent of EB1.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Membrana Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/química , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Línea Celular , Perros , Genes Reporteros , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/química , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...