Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Protoc ; 7(3)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38804337

RESUMEN

Intestinal macrophages have been poorly studied in fish, mainly due to the lack of specific molecular markers for their identification and isolation. To address this gap, using the zebrafish Tg(mpeg1:EGFP) transgenic line, we developed a fluorescence-activated cell sorting strategy (FACS) that allows us to isolate different intestinal macrophage subpopulations, based on GFP expression and morphological differences. Also, we achieved the purification of high-quality total RNA from each population to perform transcriptomic analysis. The complete strategy comprises three steps, including intestine dissection and tissue dissociation, the isolation of each intestinal macrophage population via FACS, and the extraction of total RNA. To be able to characterize molecularly different macrophage subpopulations and link them to their functional properties will allow us to unravel intestinal macrophage biology.

2.
Stem Cell Res Ther ; 15(1): 70, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454524

RESUMEN

BACKGROUND: Initially discovered for its ability to regenerate ear holes, the Murphy Roth Large (MRL) mouse has been the subject of multiple research studies aimed at evaluating its ability to regenerate other body tissues and at deciphering the mechanisms underlying it. These enhanced abilities to regenerate, retained during adulthood, protect the MRL mouse from degenerative diseases such as osteoarthritis (OA). Here, we hypothesized that mesenchymal stromal/stem cells (MSC) derived from the regenerative MRL mouse could be involved in their regenerative potential through the release of pro-regenerative mediators. METHOD: To address this hypothesis, we compared the secretome of MRL and BL6 MSC and identified several candidate molecules expressed at significantly higher levels by MRL MSC than by BL6 MSC. We selected one candidate, Plod2, and performed functional in vitro assays to evaluate its role on MRL MSC properties including metabolic profile, migration, and chondroprotective effects. To assess its contribution to MRL protection against OA, we used an experimental model for osteoarthritis induced by collagenase (CiOA). RESULTS: Among the candidate molecules highly expressed by MRL MSC, we focused our attention on procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2). Plod2 silencing induced a decrease in the glycolytic function of MRL MSC, resulting in the alteration of their migratory and chondroprotective abilities in vitro. In vivo, we showed that Plod2 silencing in MRL MSC significantly impaired their capacity to protect mouse from developing OA. CONCLUSION: Our results demonstrate that the chondroprotective and therapeutic properties of MRL MSC in the CiOA experimental model are in part mediated by PLOD2.


Asunto(s)
Células Madre Mesenquimatosas , Osteoartritis , Animales , Ratones , Células Madre Mesenquimatosas/metabolismo , Osteoartritis/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo
3.
Front Cell Dev Biol ; 11: 1123299, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215080

RESUMEN

Objective: Cartilage, as the majority of adult mammalian tissues, has limited regeneration capacity. Cartilage degradation consecutive to joint injury or aging then leads to irreversible joint damage and diseases. In contrast, several vertebrate species such as the zebrafish have the remarkable capacity to spontaneously regenerate skeletal structures after severe injuries. The objective of our study was to test the regenerative capacity of Meckel's cartilage (MC) upon mechanical injury in zebrafish and to identify the mechanisms underlying this process. Methods and Results: Cartilage regenerative capacity in zebrafish larvae was investigated after mechanical injuries of the lower jaw MC in TgBAC(col2a1a:mCherry), to visualize the loss and recovery of cartilage. Confocal analysis revealed the formation of new chondrocytes and complete regeneration of MC at 14 days post-injury (dpi) via chondrocyte cell cycle re-entry and proliferation of pre-existing MC chondrocytes near the wound. Through expression analyses, we showed an increase of nrg1 expression in the regenerating lower jaw, which also expresses Nrg1 receptors, ErbB3 and ErbB2. Pharmacological inhibition of the ErbB pathway and specific knockdown of Nrg1 affected MC regeneration indicating the pivotal role of this pathway for cartilage regeneration. Finally, addition of exogenous NRG1 in an in vitro model of osteoarthritic (OA)-like chondrocytes induced by IL1ß suggests that Nrg1/ErbB pathway is functional in mammalian chondrocytes and alleviates the increased expression of catabolic markers characteristic of OA-like chondrocytes. Conclusion: Our results show that the Nrg1/ErbB pathway is required for spontaneous cartilage regeneration in zebrafish and is of interest to design new therapeutic approaches to promote cartilage regeneration in mammals.

4.
Theranostics ; 12(8): 3995-4009, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664055

RESUMEN

Rationale: Macrophages are multifunctional cells with a pivotal role on tissue development, homeostasis and regeneration. Indeed, in response to tissue injury and the ensuing regeneration process, macrophages are challenged and undergo massive metabolic adaptations and changes. However, the control of this metabolic reprogramming by macrophage microenvironment has never been deciphered in vivo. Methods: In this study, we used zebrafish model and caudal fin resection as a robust regeneration system. We explored specific changes in gene expression after tissue amputation via single-cell RNA sequencing analysis and whole-tissue transcriptomic analysis. Based on the identification of key modifications, we confirmed the role of the lactate pathway in macrophage response and fin regeneration, through the combination of chemical and genetic inhibitors of this pathway. Results: Single cell RNA sequencing revealed the upregulation of different genes associated with glycolysis and lactate metabolism in macrophages, upon fin regeneration. Hence, using chemical inhibitors of the LDH enzyme, we confirmed the role of lactate in macrophage recruitment and polarization, to promote a pro-inflammatory phenotype and enhance fin regeneration. The genetic modulation of monocarboxylate transporters illustrated a complex regulation of lactate levels, based on both intracellular and extracellular supplies. Commonly, the different sources of lactate resulted in macrophage activation with an increased expression level of inflammatory cytokines such as TNFa during the first 24 hours of regeneration. Transcriptomic analyses confirmed that lactate induced a global modification of gene expression in macrophages. Conclusion: Altogether, our findings highlight the crucial role of lactate at the onset of macrophage differentiation toward a pro-inflammatory phenotype. The deep modifications of macrophage phenotype mediated by lactate and downstream effectors play a key role to coordinate inflammatory response and tissue regeneration.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Citocinas/metabolismo , Lactatos/metabolismo , Macrófagos/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
5.
Front Immunol ; 13: 838425, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401552

RESUMEN

The molecular and cellular mechanisms associated with tissue degradation or regeneration in an infectious context are poorly defined. Herein, we explored the role of macrophages in orchestrating either tissue regeneration or degradation in zebrafish embryos pre-infected with the fish pathogen Mycobacterium marinum. Zebrafish were inoculated with different infectious doses of M. marinum prior to fin resection. While mild infection accelerated fin regeneration, moderate or severe infection delayed this process by reducing blastemal cell proliferation and impeding tissue morphogenesis. This was correlated with impaired macrophage recruitment at the wound of the larvae receiving high infectious doses. Macrophage activation characterized, in part, by a high expression level of tnfa was exacerbated in severely infected fish during the early phase of the regeneration process, leading to macrophage necrosis and their complete absence in the later phase. Our results demonstrate how a mycobacterial infection influences the macrophage response and tissue regenerative processes.


Asunto(s)
Infecciones por Mycobacterium , Mycobacterium marinum , Animales , Macrófagos/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
6.
Life Sci Alliance ; 5(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35396334

RESUMEN

The glucose-requiring hexosamine biosynthetic pathway (HBP), which produces UDP-N-acetylglucosamine for glycosylation reactions, promotes lung adenocarcinoma (LUAD) progression. However, lung tumor cells often reside in low-nutrient microenvironments, and whether the HBP is involved in the adaptation of LUAD to nutrient stress is unknown. Here, we show that the HBP and the coat complex II (COPII) play a key role in cell survival during glucose shortage. HBP up-regulation withstood low glucose-induced production of proteins bearing truncated N-glycans, in the endoplasmic reticulum. This function for the HBP, alongside COPII up-regulation, rescued cell surface expression of a subset of glycoproteins. Those included the epidermal growth factor receptor (EGFR), allowing an EGFR-dependent cell survival under low glucose in anchorage-independent growth. Accordingly, high expression of the HBP rate-limiting enzyme GFAT1 was associated with wild-type EGFR activation in LUAD patient samples. Notably, HBP and COPII up-regulation distinguished LUAD from the lung squamous-cell carcinoma subtype, thus uncovering adaptive mechanisms of LUAD to their harsh microenvironment.


Asunto(s)
Glucosa , Hexosaminas , Receptores ErbB/genética , Glucosa/metabolismo , Glicosilación , Hexosaminas/metabolismo , Humanos , Nutrientes
7.
Nat Commun ; 12(1): 6336, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732706

RESUMEN

Fish species, such as zebrafish (Danio rerio), can regenerate their appendages after amputation through the formation of a heterogeneous cellular structure named blastema. Here, by combining live imaging of triple transgenic zebrafish embryos and single-cell RNA sequencing we established a detailed cell atlas of the regenerating caudal fin in zebrafish larvae. We confirmed the presence of macrophage subsets that govern zebrafish fin regeneration, and identified a foxd3-positive cell population within the regenerating fin. Genetic depletion of these foxd3-positive neural crest-derived cells (NCdC) showed that they are involved in blastema formation and caudal fin regeneration. Finally, chemical inhibition and transcriptomic analysis demonstrated that these foxd3-positive cells regulate macrophage recruitment and polarization through the NRG1/ErbB pathway. Here, we show the diversity of the cells required for blastema formation, identify a discrete foxd3-positive NCdC population, and reveal the critical function of the NRG1/ErbB pathway in controlling the dialogue between macrophages and NCdC.


Asunto(s)
Aletas de Animales/metabolismo , Genes erbB/genética , Macrófagos/metabolismo , Cresta Neural/metabolismo , Neurregulina-1/metabolismo , Regeneración/fisiología , Transducción de Señal/fisiología , Animales , Proliferación Celular , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Larva , Neurregulina-1/genética , Regeneración/genética , Transducción de Señal/genética , Células Madre , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Front Cell Dev Biol ; 9: 604756, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277596

RESUMEN

Murphy Roths Large (MRL) mice possess outstanding capacity to regenerate several tissues. In the present study, we investigated whether this regenerative potential could be associated with the intrinsic particularities possessed by their mesenchymal stem cells (MSCs). We demonstrated that MSCs derived from MRL mice (MRL MSCs) display a superior chondrogenic potential than do C57BL/6 MSC (BL6 MSCs). This higher chondrogenic potential of MRL MSCs was associated with a higher expression level of pyrroline-5-carboxylate reductase 1 (PYCR1), an enzyme that catalyzes the biosynthesis of proline, in MRL MSCs compared with BL6 MSCs. The knockdown of PYCR1 in MRL MSCs, using a specific small interfering RNA (siRNA), abolishes their chondrogenic potential. Moreover, we showed that PYCR1 silencing in MRL MSCs induced a metabolic switch from glycolysis to oxidative phosphorylation. In two in vitro chondrocyte models that reproduce the main features of osteoarthritis (OA) chondrocytes including a downregulation of chondrocyte markers, a significant decrease of PYCR1 was observed. A downregulation of chondrocyte markers was also observed by silencing PYCR1 in freshly isolated healthy chondrocytes. Regarding MSC chondroprotective properties on chondrocytes with OA features, we showed that MSCs silenced for PYCR1 failed to protect chondrocytes from a reduced expression of anabolic markers, while MSCs overexpressing PYCR1 exhibited an increased chondroprotective potential. Finally, using the ear punch model, we demonstrated that MRL MSCs induced a regenerative response in non-regenerating BL6 mice, while BL6 and MRL MSCs deficient for PYCR1 did not. In conclusion, our results provide evidence that MRL mouse regenerative potential is, in part, attributed to its MSCs that exhibit higher PYCR1-dependent glycolytic potential, differentiation capacities, chondroprotective abilities, and regenerative potential than BL6 MSCs.

9.
Front Cell Dev Biol ; 9: 579951, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33738280

RESUMEN

The super healer Murphy Roths Large (MRL) mouse represents the "holy grail" of mammalian regenerative model to decipher the key mechanisms that underlies regeneration in mammals. At a time when mesenchymal stem cell (MSC)-based therapy represents the most promising approach to treat degenerative diseases such as osteoarthritis (OA), identification of key factors responsible for the regenerative potential of MSC derived from MRL mouse would be a major step forward for regenerative medicine. In the present study, we assessed and compared MSC derived from MRL (MRL MSC) and C57BL/6 (BL6 MSC) mice. First, we compare the phenotype and the differentiation potential of MRL and BL6 MSC and did not observe any difference. Then, we evaluated the proliferation and migration potential of the cells and found that while MRL MSC proliferate at a slower rate than BL6 MSC, they migrate at a significantly higher rate. This higher migration potential is mediated, in part, by MRL MSC-secreted products since MRL MSC conditioned medium that contains a complex of released factors significantly increased the migration potential of BL6 MSC. A comparative analysis of the secretome by quantitative shotgun proteomics and Western blotting revealed that MRL MSC produce and release higher levels of mesencephalic astrocyte-derived neurotrophic factor (MANF) as compared to MSC derived from BL6, BALB/c, and DBA1 mice. MANF knockdown in MRL MSC using a specific small interfering RNA (siRNA) reduced both MRL MSC migration potential in scratch wound assay and their regenerative potential in the ear punch model in BL6 mice. Finally, injection of MRL MSC silenced for MANF did not protect mice from OA development. In conclusion, our results evidence that the enhanced regenerative potential and protection from OA of MRL mice might be, in part, attributed to their MSC, an effective reservoir of MANF.

10.
Br J Pharmacol ; 177(17): 4055-4073, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32520398

RESUMEN

BACKGROUND AND PURPOSE: Specialized pro-resolving mediators (SPMs) are a family of lipids controlling the resolution of inflammation and playing a role in many processes including organ protection and tissue repair. While SPMs are potent bioactive molecules in vivo, their role in epimorphic regeneration of organs in vertebrates has not been tested. Using the zebrafish larva as a robust regenerative vertebrate system, we studied the role of the SPM neuroprotectin/protectin D1 (PD1) during the caudal fin fold regeneration. EXPERIMENTAL APPROACH: Regeneration of the fin fold was analysed when exposed to a synthetic PD1. The effect of PD1 on immune cell recruitment and activation was further investigated using live imaging combined with fluorescent reporter lines. Using genetic and pharmacological approaches, we dissected the role of neutrophils and macrophages on driving the pro-regenerative effect of PD1. KEY RESULTS: We showed that PD1 improves fin fold regeneration. Acting in a narrow time window during regeneration, PD1 accelerates the resolution of inflammation without affecting the initial kinetic of neutrophil recruitment but instead, promotes their reverse migration potential. In addition, PD1 induces macrophage polarization switch towards non-inflammatory states in both zebrafish and mammalian system. Finally, macrophages but not neutrophils are essential for PD1-mediated regeneration. CONCLUSION AND IMPLICATIONS: These results reveal the pro-regenerative action of PD1 and its role in regulating neutrophil and macrophage response in vertebrates. These findings strongly support the development of pro-resolving mediators as natural therapeutic candidates for degenerative disorders and the use of the zebrafish as a tool to investigate pro-regenerative drugs.


Asunto(s)
Ácidos Docosahexaenoicos , Pez Cebra , Animales , Macrófagos , Regeneración , Cicatrización de Heridas
11.
Cancers (Basel) ; 12(3)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32121537

RESUMEN

Endoplasmic reticulum (ER) stress generates reactive oxygen species (ROS) that induce apoptosis if left unabated. To limit oxidative insults, the ER stress PKR-like endoplasmic reticulum Kinase (PERK) has been reported to phosphorylate and activate nuclear factor erythroid 2-related factor 2 (NRF2). Here, we uncover an alternative mechanism for PERK-mediated NRF2 regulation in human cells that does not require direct phosphorylation. We show that the activation of the PERK pathway rapidly stimulates the expression of NRF2 through activating transcription factor 4 (ATF4). In addition, NRF2 activation is late and largely driven by reactive oxygen species (ROS) generated during late protein synthesis recovery, contributing to protecting against cell death. Thus, PERK-mediated NRF2 activation encompasses a PERK-ATF4-dependent control of NRF2 expression that contributes to the NRF2 protective response engaged during ER stress-induced ROS production.

12.
Sci Rep ; 10(1): 3597, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32107392

RESUMEN

Identifying genes involved in vertebrate developmental processes and characterizing this involvement are daunting tasks, especially in the mouse where viviparity complicates investigations. Attempting to devise a streamlined approach for this type of study we focused on limb development. We cultured E10.5 and E12.5 embryos and performed transcriptional profiling to track molecular changes in the forelimb bud over a 6-hour time-window. The expression of certain genes was found to diverge rapidly from its normal path, possibly reflecting the activation of a stress-induced response. Others, however, maintained for up to 3 hours dynamic expression profiles similar to those seen in utero. Some of these resilient genes were known regulators of limb development. The implication of the others in this process was either unsuspected or unsubstantiated. The localized knockdown of two such genes, Fgf11 and Tbx1, hampered forelimb bud development, providing evidence of their implication. These results show that combining embryo culture, transcriptome analysis and RNA interference could speed up the identification of genes involved in a variety of developmental processes, and the validation of their implication.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Miembro Anterior/fisiología , Proteínas de Dominio T Box/metabolismo , Animales , Células Cultivadas , Biología Computacional , Embrión de Mamíferos , Factores de Crecimiento de Fibroblastos/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Organogénesis/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas de Dominio T Box/genética , Transcriptoma
13.
Mol Syst Biol ; 14(1): e7803, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335276

RESUMEN

More and more natural DNA variants are being linked to physiological traits. Yet, understanding what differences they make on molecular regulations remains challenging. Important properties of gene regulatory networks can be captured by computational models. If model parameters can be "personalized" according to the genotype, their variation may then reveal how DNA variants operate in the network. Here, we combined experiments and computations to visualize natural alleles of the yeast GAL3 gene in a space of model parameters describing the galactose response network. Alleles altering the activation of Gal3p by galactose were discriminated from those affecting its activity (production/degradation or efficiency of the activated protein). The approach allowed us to correctly predict that a non-synonymous SNP would change the binding affinity of Gal3p with the Gal80p transcriptional repressor. Our results illustrate how personalizing gene regulatory models can be used for the mechanistic interpretation of genetic variants.


Asunto(s)
Polimorfismo de Nucleótido Simple , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Alelos , Sitios de Unión , Galactosa/farmacología , Regulación Fúngica de la Expresión Génica , Modelos Genéticos , Modelos Moleculares , Unión Proteica , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional
14.
Sci Rep ; 6: 27278, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27255611

RESUMEN

The hexosamine biosynthetic pathway (HBP) is a nutrient-sensing metabolic pathway that produces the activated amino sugar UDP-N-acetylglucosamine, a critical substrate for protein glycosylation. Despite its biological significance, little is known about the regulation of HBP flux during nutrient limitation. Here, we report that amino acid or glucose shortage increase GFAT1 production, the first and rate-limiting enzyme of the HBP. GFAT1 is a transcriptional target of the activating transcription factor 4 (ATF4) induced by the GCN2-eIF2α signalling pathway. The increased production of GFAT1 stimulates HBP flux and results in an increase in O-linked ß-N-acetylglucosamine protein modifications. Taken together, these findings demonstrate that ATF4 provides a link between nutritional stress and the HBP for the regulation of the O-GlcNAcylation-dependent cellular signalling.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Aminoácidos/metabolismo , Glucosa/metabolismo , Hexosaminas/biosíntesis , Proteínas Serina-Treonina Quinasas/metabolismo , Acetilglucosamina/metabolismo , Animales , Vías Biosintéticas , Línea Celular , Células HeLa , Humanos , Ratones , Transferasas de Grupos Nitrogenados/metabolismo , Ratas , Transducción de Señal
15.
Mol Syst Biol ; 9: 695, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24104478

RESUMEN

Living systems may have evolved probabilistic bet hedging strategies that generate cell-to-cell phenotypic diversity in anticipation of environmental catastrophes, as opposed to adaptation via a deterministic response to environmental changes. Evolution of bet hedging assumes that genotypes segregating in natural populations modulate the level of intraclonal diversity, which so far has largely remained hypothetical. Using a fluorescent P(met17)-GFP reporter, we mapped four genetic loci conferring to a wild yeast strain an elevated cell-to-cell variability in the expression of MET17, a gene regulated by the methionine pathway. A frameshift mutation in the Erc1p transmembrane transporter, probably resulting from a release of laboratory strains from negative selection, reduced P(met17)-GFP expression variability. At a second locus, cis-regulatory polymorphisms increased mean expression of the Mup1p methionine permease, causing increased expression variability in trans. These results demonstrate that an expression quantitative trait locus (eQTL) can simultaneously have a deterministic effect in cis and a probabilistic effect in trans. Our observations indicate that the evolution of transmembrane transporter genes can tune intraclonal variation and may therefore be implicated in both reactive and anticipatory strategies of adaptation.


Asunto(s)
Cisteína Sintasa/genética , Regulación Fúngica de la Expresión Génica , Variación Genética , Proteínas de Transporte de Membrana/genética , Proteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adaptación Fisiológica/genética , Evolución Biológica , Cisteína Sintasa/metabolismo , Ambiente , Mutación del Sistema de Lectura , Interacción Gen-Ambiente , Genes Reporteros , Ligamiento Genético , Genotipo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas/metabolismo , Sitios de Carácter Cuantitativo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
PLoS One ; 3(8): e2902, 2008 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-18682833

RESUMEN

The Ras GTPase-activating protein RasGAP catalyzes the conversion of active GTP-bound Ras into inactive GDP-bound Ras. However, RasGAP also acts as a positive effector of Ras and exerts an anti-apoptotic activity that is independent of its GAP function and that involves its SH3 (Src homology) domain. We used a combinatorial peptide aptamer approach to select a collection of RasGAP SH3 specific ligands. We mapped the peptide aptamer binding sites by performing yeast two-hybrid mating assays against a panel of RasGAP SH3 mutants. We examined the biological activity of a peptide aptamer targeting a pocket delineated by residues D295/7, L313 and W317. This aptamer shows a caspase-independent cytotoxic activity on tumor cell lines. It disrupts the interaction between RasGAP and Aurora B kinase. This work identifies the above-mentioned pocket as an interesting therapeutic target to pursue and points its cognate peptide aptamer as a promising guide to discover RasGAP small-molecule drug candidates.


Asunto(s)
Caspasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Secuencia de Aminoácidos , Aurora Quinasas , Sitios de Unión , Secuencia Conservada , Datos de Secuencia Molecular , Fragmentos de Péptidos/farmacología , Proteínas Serina-Treonina Quinasas/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Proteínas Activadoras de ras GTPasa/antagonistas & inhibidores , Proteínas Activadoras de ras GTPasa/química
17.
BMC Genomics ; 7: 94, 2006 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-16640784

RESUMEN

BACKGROUND: Owing to the explosion of information generated by human genomics, analysis of publicly available databases can help identify potential candidate genes relevant to the cancerous phenotype. The aim of this study was to scan for such genes by whole-genome in silico subtraction using Expressed Sequence Tag (EST) data. METHODS: Genes differentially expressed in normal versus tumor tissues were identified using a computer-based differential display strategy. Bcl-xL, an anti-apoptotic member of the Bcl-2 family, was selected for confirmation by western blot analysis. RESULTS: Our genome-wide expression analysis identified a set of genes whose differential expression may be attributed to the genetic alterations associated with tumor formation and malignant growth. We propose complete lists of genes that may serve as targets for projects seeking novel candidates for cancer diagnosis and therapy. Our validation result showed increased protein levels of Bcl-xL in two different liver cancer specimens compared to normal liver. Notably, our EST-based data mining procedure indicated that most of the changes in gene expression observed in cancer cells corresponded to gene inactivation patterns. Chromosomes and chromosomal regions most frequently associated with aberrant expression changes in cancer libraries were also determined. CONCLUSION: Through the description of several candidates (including genes encoding extracellular matrix and ribosomal components, cytoskeletal proteins, apoptotic regulators, and novel tissue-specific biomarkers), our study illustrates the utility of in silico transcriptomics to identify tumor cell signatures, tumor-related genes and chromosomal regions frequently associated with aberrant expression in cancer.


Asunto(s)
Biología Computacional/métodos , Etiquetas de Secuencia Expresada , Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Algoritmos , Western Blotting , Mapeo Cromosómico , Cromosomas/ultraestructura , Interpretación Estadística de Datos , Bases de Datos Genéticas , Regulación hacia Abajo , Perfilación de la Expresión Génica/métodos , Biblioteca de Genes , Genoma Humano , Humanos , Queratinas/metabolismo , Neoplasias Hepáticas/metabolismo , Modelos Genéticos , Neoplasias/embriología , Neoplasias/genética , Regulación hacia Arriba , Proteína bcl-X/biosíntesis , Proteína bcl-X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...