Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ambio ; 53(7): 970-983, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38696060

RESUMEN

The EU Nature Restoration Law (NRL) is critical for the restoration of degraded ecosystems and active afforestation of degraded peatlands has been suggested as a restoration measure under the NRL. Here, we discuss the current state of scientific evidence on the climate mitigation effects of peatlands under forestry. Afforestation of drained peatlands without restoring their hydrology does not fully restore ecosystem functions. Evidence on long-term climate benefits is lacking and it is unclear whether CO2 sequestration of forest on drained peatland can offset the carbon loss from the peat over the long-term. While afforestation may offer short-term gains in certain cases, it compromises the sustainability of peatland carbon storage. Thus, active afforestation of drained peatlands is not a viable option for climate mitigation under the EU Nature Restoration Law and might even impede future rewetting/restoration efforts. Instead, restoring hydrological conditions through rewetting is crucial for effective peatland restoration.


Asunto(s)
Conservación de los Recursos Naturales , Unión Europea , Agricultura Forestal , Suelo , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/métodos , Suelo/química , Bosques , Secuestro de Carbono , Restauración y Remediación Ambiental/métodos , Cambio Climático , Ecosistema , Humedales
5.
Ambio ; 52(9): 1519-1528, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37222914

RESUMEN

Peatlands are among the world's most carbon-dense ecosystems and hotspots of carbon storage. Although peatland drainage causes strong carbon emissions, land subsidence, fires and biodiversity loss, drainage-based agriculture and forestry on peatland is still expanding on a global scale. To maintain and restore their vital carbon sequestration and storage function and to reach the goals of the Paris Agreement, rewetting and restoration of all drained and degraded peatlands is urgently required. However, socio-economic conditions and hydrological constraints hitherto prevent rewetting and restoration on large scale, which calls for rethinking landscape use. We here argue that creating integrated wetscapes (wet peatland landscapes), including nature preserve cores, buffer zones and paludiculture areas (for wet productive land use), will enable sustainable and complementary land-use functions on the landscape level. As such, transforming landscapes into wetscapes presents an inevitable, novel, ecologically and socio-economically sound alternative for drainage-based peatland use.


Asunto(s)
Ecosistema , Humedales , Agricultura , Biodiversidad , Carbono , Suelo
6.
Nature ; 614(7947): 281-286, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36755174

RESUMEN

Wetlands have long been drained for human use, thereby strongly affecting greenhouse gas fluxes, flood control, nutrient cycling and biodiversity1,2. Nevertheless, the global extent of natural wetland loss remains remarkably uncertain3. Here, we reconstruct the spatial distribution and timing of wetland loss through conversion to seven human land uses between 1700 and 2020, by combining national and subnational records of drainage and conversion with land-use maps and simulated wetland extents. We estimate that 3.4 million km2 (confidence interval 2.9-3.8) of inland wetlands have been lost since 1700, primarily for conversion to croplands. This net loss of 21% (confidence interval 16-23%) of global wetland area is lower than that suggested previously by extrapolations of data disproportionately from high-loss regions. Wetland loss has been concentrated in Europe, the United States and China, and rapidly expanded during the mid-twentieth century. Our reconstruction elucidates the timing and land-use drivers of global wetland losses, providing an improved historical baseline to guide assessment of wetland loss impact on Earth system processes, conservation planning to protect remaining wetlands and prioritization of sites for wetland restoration4.


Asunto(s)
Recursos Naturales , Análisis Espacio-Temporal , Humedales , Humanos , Biodiversidad , China , Europa (Continente) , Recursos Naturales/provisión & distribución , Estados Unidos , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI
7.
Nat Commun ; 11(1): 1644, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32242055

RESUMEN

Peatlands are strategic areas for climate change mitigation because of their matchless carbon stocks. Drained peatlands release this carbon to the atmosphere as carbon dioxide (CO2). Peatland rewetting effectively stops these CO2 emissions, but also re-establishes the emission of methane (CH4). Essentially, management must choose between CO2 emissions from drained, or CH4 emissions from rewetted, peatland. This choice must consider radiative effects and atmospheric lifetimes of both gases, with CO2 being a weak but persistent, and CH4 a strong but short-lived, greenhouse gas. The resulting climatic effects are, thus, strongly time-dependent. We used a radiative forcing model to compare forcing dynamics of global scenarios for future peatland management using areal data from the Global Peatland Database. Our results show that CH4 radiative forcing does not undermine the climate change mitigation potential of peatland rewetting. Instead, postponing rewetting increases the long-term warming effect through continued CO2 emissions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...