Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 401: 130728, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657827

RESUMEN

This study investigated a lignin-first approach to produce furan-modified lignin from sugarcane bagasse (SB), rice hull (RH), and sunn hemp biomass (SHB) using 5 methylfurfural (MF) and 5 methul-2-furanmethanol (MFM). The reaction time (5 h) was selected based on the delignification of SB using methanol and Ru/C catalyst which yielded the highest hydroxyl content. Delignification of SB with various MF weight ratios (1:1, 1:2, 1:3, 2:1, and 3:1) revealed that 1:1 and 2:1 ratios produced the highest hydroxyl content (7.7 mmol/g) and bio-oil yield (23.2 % wt% total weight). Further exploration identified that RH and MF at 1:1 ratio and SHB and MF at a 2:1 ratio produced the highest hydroxyl content (13.0 mmol/g) and bio-oil yield (31.6 % wt% tot. weight). This study developed a one-step method to extract and modify lignin with furan compounds simultaneously while opening new avenues for developing value-added products.


Asunto(s)
Furanos , Lignina , Lignina/química , Furanos/química , Biomasa , Agricultura , Oryza/química , Celulosa/química , Saccharum/química , Biocombustibles , Residuos , Cannabis/química
2.
ACS Omega ; 8(43): 40442-40455, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37929081

RESUMEN

To reduce the production cost of chemicals from renewable resources, the feedstock loading must be high and the catalyst must be of low cost and efficient. In this study, at a very short reaction time of 10 min at 125 °C, concentrated sugar solutions (20 wt %, 101 wt % on solvent) were converted to 5-hydroxymethylfurfural (HMF) over a cotton gin trash (CGT)-derived sulfonated carbon catalyst in a 1-butyl-3-methyl-imidazolium chloride ([BMIM]Cl) and 2-methyltetrahydrofuran (MeTHF) biphasic system. We report, for the first time, that the presence of glucose either as a covalently bonded monomer in sucrose or in a mixture with fructose achieved yields of HMF up to 62 mol % compared to a value of only 39 mol % obtained with fructose on its own. In the concentrated reaction medium, glucose, fructose, and sucrose molecules produce difructose anhydrides, dimers/reversion products, and sucrose isomers. The glucose-fructose dimers formed in sucrose and glucose/fructose reaction systems play a critical role in the transformation of the sugars to a higher-than-expected HMF yield. Thus, a strategy of using cellulosic glucose, where it is partially converted to fructose content and the high sugar concentration sugar mixture is then converted to HMF, should be exploited for future biorefineries.

3.
Waste Manag ; 140: 110-120, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35078075

RESUMEN

This study aims to identify suitable processing conditions for converting pyrolytic solid residue from off-the-road tyres (OTR) to improve carbon materials properties that can be used in multiple applications and the recovery of minerals from OTR. Pyrolysis of OTR at 800 °C and a heating rate 2 °C.min-1 gave a carbon material with the highest surface area, most defective carbon structures, and the highest micro-porosity. This operating condition was used to compare the conventional three-step carbonization approach, which involves a demineralization stage that produces high volumes of toxic wastewater, with a two-step approach that bypasses this stage. Analysis of the carbon structures showed that the quality of the carbon material from the two-step approach is similar to the three-step approach. This two-step approach resulted in a solid and a liquid phase, in which âˆ¼ 93.4% of Zn was selectively fractionated to the liquid phase. The wastewater from the acid wash of the carbonized OTR was neutralized to recover the SiO2, of which 55.5% was reactive SiO2. The SiO2 was found to have an exceptionally high cross-linking ratio of 5.94, achievable only when SiO2 is reacted with silane groups. The study demonstrated that the engineered carbon material from OTR has a H2 uptake of 1.03 wt% at 77 K and 1.2 bar, and the sulfonated counterpart was an effective catalyst (64% conversion) for the Aldol condensation of levunilic acid to two dimer products [tetrahydro-2- methyl-5,γ-dioxo-2-furanpentanoic acid (TMDFA) and 3-(2-methyl-5-oxo- tetrahydrofuran-2-yl)-4-oxopentanoic acid (MOTOA)] that are precursors for fuels and chemicals.


Asunto(s)
Carbono , Silanos , Dióxido de Silicio , Zinc
4.
ACS Omega ; 4(16): 16980-16993, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31646245

RESUMEN

We have investigated the production of benzyl alcohols and bioaromatics via the reductive lignin depolymerization process over Fe/H-style ultrastable Y (HUSY), Ni/HUSY, and Ni-Fe/HUSY catalysts using HCOOK/ETOH in air. Synergy effect between HCOOK and the catalysts improved the depolymerization process, resulting in a higher bio-oil recovery. HCOOK does not act solely as an in situ hydrogen source; it also interacts with lignin to enable its initial depolymerization via a base-catalyzed mechanism to low-molecular-weight fragments, and in tandem with the catalyst, the hydrogenolysis rate of the depolymerized lignin monomers was enhanced. Fe/HUSY displayed an excellent activity for the catalytic reductive step in contrast to Ni/HUSY and Ni-Fe/HUSY by facilitating methoxy group removal via hydrogenolysis, thereby contributing to the yield and stabilization of the low-molecular-weight aromatics [diethyl ether (DEE)-soluble products]. Fe/HUSY gave the highest DEE product yield of >99 wt % and a total benzyl alcohol yield of 16 wt % with a total selectivity of 47 wt % (60 wt % for aromatic alcohols). Fe/HUSY was reused for the lignin depolymerization reaction without much loss of its initial activity, giving 13 wt % yield of benzyl alcohols with a selectivity of 58 wt % (77 wt % for aromatic alcohols).

5.
BMC Neurosci ; 6: 63, 2005 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-16259636

RESUMEN

BACKGROUND: Stromal cell-derived factor 1 (SDF-1 or CXCL12) is chemotaxic for CXCR4 expressing bone marrow-derived cells. It functions in brain embryonic development and in response to ischemic injury in helping guide neuroblast migration and vasculogenesis. In experimental adult stroke models SDF-1 is expressed perivascularly in the injured region up to 30 days after the injury, suggesting it could be a therapeutic target for tissue repair strategies. We hypothesized that SDF-1 would be expressed in similar temporal and spatial patterns following hypoxic-ischemic (HI) injury in neonatal brain. RESULTS: Twenty-five 7-day-old C57BL/J mice underwent HI injury. SDF-1 expression was up regulated up to 7 days after the injury but not at the later time points. The chief sites of SDF-1 up regulation were astrocytes, their foot processes along blood vessels and endothelial cells. CONCLUSION: The localization of SDF-1 along blood vessels in the HI injury zone suggests that these perivascular areas are where chemotaxic signaling for cellular recruitment originates and that reactive astrocytes are major mediators of this process. The associated endothelium is likely to be the site for vascular attachment and diapedesis of CXCR4 receptor expressing cells to enter the injured tissue. Here we show that, relative to adults, neonates have a significantly smaller window of opportunity for SDF-1 based vascular chemotaxic recruitment of bone marrow-derived cells. Therefore, without modification, following neonatal HI injury there is only a narrow period of time for endogenous SDF-1 mediated chemotaxis and recruitment of reparative cells, including exogenously administered stem/progenitor cells.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Quimiocinas CXC/biosíntesis , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipoxia-Isquemia Encefálica/metabolismo , Regulación hacia Arriba/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Astrocitos/patología , Quimiocina CXCL12 , Quimiocinas CXC/genética , Quimiotaxis/fisiología , Hipoxia-Isquemia Encefálica/patología , Ratones , Ratones Endogámicos C57BL
6.
BMC Neurosci ; 6: 15, 2005 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-15743533

RESUMEN

BACKGROUND: Mechanisms that affect recovery from fetal and neonatal hypoxic-ischemic (H-I) brain injury have not been fully elucidated. The incidence of intrapartum asphyxia is approximately 2.5%, but the occurrence of adverse clinical outcome is much lower. One of the factors which may account for this relatively good outcome is the process of neurogenesis, which has been described in adult animals. We used a neonatal mouse model to assess new cells in the hippocampus after H-I injury. RESULTS: Neonatal mice underwent permanent unilateral carotid ligation on the seventh postnatal day followed by exposure to 8% hypoxia for 75 minutes. The presence of new cells was determined by bromodeoxyuridine (BrdU) incorporation into cells with sacrifice of the animals at intervals. Brain sections were stained for BrdU in combination with neuronal, glial, endothelial and microglial stains. We found a significant increase in BrdU-positive cells in the neonatal mouse hippocampus in the injured area compared to the non-injured area, most prominent in the dentate gyrus (DG) (154.5 +/- 59.6 v. 92.9 +/- 32.7 at 3 days after injury; 68.9 +/- 23.4 v. 52.4 +/- 17.1 at 35 days after injury, p < 0.0011). Among the cells which showed differentiation, those which were stained as either microglial or endothelial cells showed a peak increase at three days after the injury in the DG, injured versus non-injured side (30.5 +/- 17.8 v. 2.7 +/- 2.6, p < 0.0002). As in the adult animal, neurogenesis was significantly increased in the DG with injury (15.0 +/- 4.6 v. 5.2 +/- 1.6 at 35 days after injury, p < 0.0002), and this increase was subsequent to the appearance of the other dividing cells. Numbers of new oligodendrocytes were significantly higher in the DG on the non-injured side (7.0 +/- 24.2 v. 0.1 +/- 0.3, p < 0.0002), suggesting that oligodendrocyte synthesis was reduced in the injured hippocampus. CONCLUSION: These findings demonstrate that the neonatal animal responds to brain injury with neurogenesis, much like the adult animal. In addition, H-I insult leads to more neurogenesis than hypoxia alone. This process may play a role in the recovery of the neonatal animal from H-I insult, and if so, enhancement of the process may improve recovery.


Asunto(s)
Bromodesoxiuridina/análisis , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Hipoxia-Isquemia Encefálica/patología , Animales , Animales Recién Nacidos , Recuento de Células/métodos , Hipocampo/química , Ratones , Ratones Endogámicos C57BL
7.
Expert Opin Biol Ther ; 3(4): 541-9, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12831360

RESUMEN

Cerebral palsy is a group of brain diseases which produce chronic motor disability in children. The causes are quite varied and range from abnormalities of brain development to birth-related injuries to postnatal brain injuries. Due to the increased survival of very premature infants, the incidence of cerebral palsy may be increasing. While premature infants and term infants who have suffered neonatal hypoxic-ischaemic (HI) injury represent only a minority of the total cerebral palsy population, this group demonstrates easily identifiable clinical findings, and much of their injury is to oligodendrocytes and the cerebral white matter. While the use of stem cell therapy is promising, there are no controlled trials in humans with cerebral palsy and only a few trials in patients with other neurologic disorders. However, studies in animals with experimentally induced strokes or traumatic injuries have indicated that benefit is possible. The potential to do these transplants via injection into the vasculature rather than directly into the brain increases the likelihood of timely human studies. As a result, variables appropriate to human experiments with intravascular injection of cells, such as cell type, timing of the transplant and effect on function, need to be systematically performed in animal models with HI injury, with the hope of rapidly translating these experiments to human trials.


Asunto(s)
Parálisis Cerebral/terapia , Trasplante de Células Madre , Animales , Células de la Médula Ósea , Encéfalo/citología , Diferenciación Celular , Línea Celular , Parálisis Cerebral/patología , Humanos , Neuronas/trasplante , Trasplante de Células Madre/efectos adversos , Trasplante de Células Madre/métodos , Células del Estroma/trasplante
8.
J Mass Spectrom ; 37(9): 897-902, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12271432

RESUMEN

Electrospray ionization (ESI) mass spectra have been recorded for a range of substituted nitronyl nitroxide and iminyl nitroxide monoradicals and biradicals. Secondary species formed in the ESI source were observed as the dominant ions in both the iminyl nitroxide and nitronyl nitroxide spectra. Daughter ion spectrometry was used to establish fragmentation mechanisms for the nitronyl nitroxide and iminyl nitroxide moieties as well as the secondary species under ESI conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...