Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38226566

RESUMEN

A mesophilic, anaerobic, endospore-forming, fermentative bacterium designated strain 8C15bT was isolated from bank sediment of the Bach Dang Estuary, Haiphong, Vietnam. The Bach Dang Estuary, where Haiphong harbour is located, is subject to strong anthropogenic influence, resulting in high concentrations of black carbon and heavy metals. Strain 8C15bT grew optimally at 30 °C, pH 7.5 and with 2.5 % (w/v) NaCl. The main cellular fatty acids consisted of iso-C15 : 0 (51 %), iso-C15:1 ω7c (32 %) and iso-C13 : 0 (5 %). Genomic considerations of strain 8C15bT and comparisons with the phylogenetically closest strains of the genus Tepidibacter provide evidence that Tepidibacter thalassicus SC562T (=DSM 15285T), Tepidibacter formicigenes DV1184T (=DSM 15518T), Tepidibacter mesophilus B1T (=JCM 16806T) and strain 8C15bT could be differentiated at the species level. We propose the name Tepidibacter aestuarii sp. nov. for the type strain 8C15bT (=JCM 35983T=KCTC 25692T). Finally, the nickel-tolerance properties of strain 8C15bT are highlighted in this study.


Asunto(s)
Estuarios , Ácidos Grasos , Ácidos Grasos/química , Vietnam , Análisis de Secuencia de ADN , Filogenia , Composición de Base , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , Fosfolípidos/química
2.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38015056

RESUMEN

A novel thermophilic strain, designated BP5-C20AT, was isolated from the shallow hydrothermal field of the Panarea island in the Aeolian archipelago close to Sicily, Italy. Cells are motile rods surrounded with a 'toga', Gram-stain-negative and display a straight to curved morphology during the exponential phase. Strain BP5-C20AT is thermophilic (optimum 55 °C), moderately acidophilic (optimum pH 5.6) and halotolerant (optimum 25 g l-1 NaCl). It can use yeast extract, peptone and tryptone. It uses the following carbohydrates: cellobiose, fructose, glucose, maltose, starch, sucrose and xylan. Elemental sulphur is used as an electron acceptor and reduced to hydrogen sulphide. The predominant cellular fatty acid is C16 : 0. Phylogenetic analysis showed that strain BP5-C20AT shared 97.3 % 16S rRNA gene sequence identity with the closest related species Marinitoga lauensis LG1T. The complete genome of strain BP5-C20AT is 2.44 Mb in size with a G+C content of 27.3 mol%. The dDDH and ANI values between the genomes of strains BP5-C20AT and M. lauensis LG1T are 31.0 and 85.70% respectively. Finally, from its physiological, metabolic and genomic characteristics, strain BP5-C20AT (=DSM 112332T=JCM 39183 T) is proposed as representative of a novel species of the genus Marinitoga named Marinitoga aeolica sp. nov. and belonging to the order Petrotogales, in the phylum Thermotogota.


Asunto(s)
Ácidos Grasos , Anaerobiosis , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Italia
3.
Microorganisms ; 11(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985346

RESUMEN

Pseudothermotoga elfii strain DSM9442 and P. elfii subsp. lettingae strain DSM14385 are hyperthermophilic bacteria. P. elfii DSM9442 is a piezophile and was isolated from a depth of over 1600 m in an oil-producing well in Africa. P. elfii subsp. lettingae is piezotolerant and was isolated from a thermophilic bioreactor fed with methanol as the sole carbon and energy source. In this study, we analyzed both strains at the genomic and transcriptomic levels, paying particular attention to changes in response to pressure increases. Transcriptomic analyses revealed common traits of adaptation to increasing hydrostatic pressure in both strains, namely, variations in transport membrane or carbohydrate metabolism, as well as species-specific adaptations such as variations in amino acid metabolism and transport for the deep P. elfii DSM9442 strain. Notably, this work highlights the central role played by the amino acid aspartate as a key intermediate of the pressure adaptation mechanisms in the deep strain P. elfii DSM9442. Our comparative genomic and transcriptomic analysis revealed a gene cluster involved in lipid metabolism that is specific to the deep strain and that was differentially expressed at high hydrostatic pressures and might, thus, be a good candidate for a piezophilic gene marker in Pseudothermotogales.

4.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36260502

RESUMEN

An anaerobic, hydrogenotrophic methane-producing archaeon was isolated from an alkaline thermal spring (42 °C, pH 9.0) in New Caledonia. This methanogen, designated strain CANT, is alkaliphilic, thermotolerant, with Gram-positive staining non-motile cells. Strain CANT grows autotrophically using hydrogen exclusively as an energy source and carbon dioxide as the sole carbon source (without the requirement of yeast extract or other organic compounds). It grows at 20-45 °C (optimum, 45 °C) and pH 7.3-9.7 (optimum, pH 9.0). NaCl is not required for growth (optimum 0 %) but is tolerated up to 1.5 %. It resists novobiocin, streptomycin and vancomycin but is inhibited by ampicillin and penicillin, among other antibiotics. The genome consists of a circular chromosome (2.2 Mb) containing 2126 predicted protein-encoding genes with a G+C content of 36.4 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain CANT is a member of the genus Methanobacterium, most closely related to the alkaliphilic Methanobacterium alcaliphilum WeN4T with 98.5 % 16S rRNA gene sequence identity. The genomes of strain CANT and M. alcaliphilum DSM 3459, sequenced in this study, share 71.6 % average nucleotide identity and 14.0 % digital DNA-DNA hybridization. Therefore, phylogenetic and physiological results indicate that strain CANT represents a novel species, for which the name Methanobacterium alkalithermotolerans sp. nov. is proposed, and strain CANT (=DSM 102889T= JCM 31304T) is assigned as the type strain.


Asunto(s)
Manantiales de Aguas Termales , Methanobacterium , Methanobacterium/genética , ARN Ribosómico 16S/genética , Filogenia , Hidrógeno , Composición de Base , Cloruro de Sodio , Dióxido de Carbono , Vancomicina , Novobiocina , Nueva Caledonia , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , Metano , Antibacterianos , Ampicilina , Penicilinas , Estreptomicina , Nucleótidos
5.
Microorganisms ; 9(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201651

RESUMEN

(1) Background: The geothermal spring of La Crouen (New Caledonia) discharges warm (42 °C) alkaline water (pH~9) enriched in dissolved nitrogen with traces of methane, but its microbial diversity has not yet been studied. (2) Methods: Cultivation-dependent and -independent methods (e.g., Illumina sequencing and quantitative PCR based on 16S rRNA gene) were used to describe the prokaryotic diversity of this spring. (3) Results: Prokaryotes were mainly represented by Proteobacteria (57% on average), followed by Cyanobacteria, Chlorofexi, and Candidatus Gracilibacteria (GN02/BD1-5) (each > 5%). Both potential aerobes and anaerobes, as well as mesophilic and thermophilic microorganisms, were identified. Some of them had previously been detected in continental hyperalkaline springs found in serpentinizing environments (The Cedars, Samail, Voltri, and Zambales ophiolites). Gammaproteobacteria, Ca. Gracilibacteria and Thermotogae were significantly more abundant in spring water than in sediments. Potential chemolithotrophs mainly included beta- and gammaproteobacterial genera of sulfate-reducers (Ca. Desulfobacillus), methylotrophs (Methyloversatilis), sulfur-oxidizers (Thiofaba, Thiovirga), or hydrogen-oxidizers (Hydrogenophaga). Methanogens (Methanobacteriales and Methanosarcinales) were the dominant Archaea, as found in serpentinization-driven and deep subsurface ecosystems. A novel alkaliphilic hydrogenotrophic methanogen (strain CAN) belonging to the genus Methanobacterium was isolated, suggesting that hydrogenotrophic methanogenesis occurs at La Crouen.

6.
Artículo en Inglés | MEDLINE | ID: mdl-34003738

RESUMEN

A novel anaerobic, alkaliphilic, mesophilic, Gram-stain-positive, endospore-forming bacterium was isolated from an alkaline thermal spring (42 °C, pH 9.0) in New Caledonia. This bacterium, designated strain LB2T, grew at 25-50 °C (optimum, 37 °C) and pH 8.2-10.8 (optimum, pH 9.5). Added NaCl was not required for growth (optimum, 0-1 %) but was tolerated up to 7 %. Strain LB2T utilized a limited range of substrates, such as peptone, pyruvate, yeast extract and xylose. End products detected from pyruvate fermentation were acetate and formate. Both ferric citrate and thiosulfate were used as electron acceptors. Elemental sulphur, nitrate, nitrite, fumarate, sulphate, sulfite and DMSO were not used as terminal electron acceptors. The two major cellular fatty acids were iso-C15 : 0 and C16 : 0. The genome consists of a circular chromosome (3.7 Mb) containing 3626 predicted protein-encoding genes with a G+C content of 36.2 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the isolate is a member of the family Proteinivoraceae, order Clostridiales within the phylum Firmicutes. Strain LB2T was most closely related to the thermophilic Anaerobranca gottschalkii LBS3T (93.2 % 16S rRNA gene sequence identity). Genome-based analysis of average nucleotide identity and digital DNA-DNA hybridization of strain LB2T with A. gottschalkii LBS3T showed respective values of 70.8 and 13.4 %. Based on phylogenetic, genomic, chemotaxonomic and physiological properties, strain LB2T is proposed to represent the first species of a novel genus, for which the name Alkalicella caledoniensis gen. nov., sp. nov. is proposed (type strain LB2T=DSM 100588T=JCM 30958T).


Asunto(s)
Clostridiales/clasificación , Manantiales de Aguas Termales/microbiología , Filogenia , Anaerobiosis , Bacterias Anaerobias/clasificación , Bacterias Anaerobias/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Fermentación , Nueva Caledonia , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
7.
Front Microbiol ; 11: 588771, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343528

RESUMEN

Microorganisms living in deep-oil reservoirs face extreme conditions of elevated temperature and hydrostatic pressure. Within these microbial communities, members of the order Thermotogales are predominant. Among them, the genus Pseudothermotoga is widespread in oilfield-produced waters. The growth and cell phenotypes under hydrostatic pressures ranging from 0.1 to 50 MPa of two strains from the same species originating from subsurface, Pseudothermotoga elfii DSM9442 isolated from a deep African oil-producing well, and surface, P. elfii subsp. lettingae isolated from a thermophilic sulfate-reducing bioreactor, environments are reported for the first time. The data support evidence for the piezophilic nature of P. elfii DSM9442, with an optimal hydrostatic pressure for growth of 20 MPa and an upper limit of 40 MPa, and the piezotolerance of P. elfii subsp. lettingae with growth occurring up to 20 MPa only. Under the experimental conditions, both strains produce mostly acetate and propionate as volatile fatty acids with slight variations with respect to the hydrostatic pressure for P. elfii DSM9442. The data show that the metabolism of P. elfii DSM9442 is optimized when grown at 20 MPa, in agreement with its piezophilic nature. Both Pseudothermotoga strains form chained cells when the hydrostatic pressure increases, especially P. elfii DSM9442 for which 44% of cells is chained when grown at 40 MPa. The viability of the chained cells increases with the increase in the hydrostatic pressure, indicating that chain formation is a protective mechanism for P. elfii DSM9442.

8.
Syst Appl Microbiol ; 43(6): 126132, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33038732

RESUMEN

Hot oil reservoirs harbor diverse microbial communities, with many of them inhabiting thermophilic or hyperthermophilic fermentative Thermotogae species. A new Thermotoga sp. strain TFO was isolated from an Californian offshore oil reservoir which is phylogenetically related to thermophilic species T. petrophila RKU-1T and T. naphthophila RKU-10T, isolated from the Kubiki oil reservoir in Japan. The average nucleotide identity and DNA-DNA hybridization measures provide evidence that the novel strain TFO is closely related to T. naphthophila RKU-10T, T. petrophila RKU-1T and can not be differentiated at the species level. In the light of these results, the reclassification of T. naphthophila RKU-10 and strain TFO as heterotypic synonyms of T. petrophila is proposed. A pangenomic survey of closely related species revealed 55 TFO strain-specific proteins, many of which being linked to glycosyltransferases and mobile genetic elements such as recombinases, transposases and prophage, which can contribute to genome evolution and plasticity, promoting bacterial diversification and adaptation to environmental changes. The discovery of a TFO-specific transport system dctPQM, encoding a tripartite ATP-independent periplasmic transporter (TRAP), has to be highlighted. The presence of this TRAP system assumes that it could assist in anaerobic n-alkane degradation by addition of fumarate dicarboxylic acid, suggesting a niche-specific gene pool which correlates with the oil reservoir that T. petrophila TFO inhabits. Finally, T. naphthophila RKU-10, T. petrophila RKU-1T, T. petrophila TFO form a distinct phylogenetic lineage with different geographic origins, share the same type of ecological niche including the burial history of fields. Theses findings might support the indigenous character of this species in oil reservoirs.


Asunto(s)
Petróleo/microbiología , Filogenia , Thermotoga/clasificación , Anaerobiosis , Técnicas de Tipificación Bacteriana , California , ADN Bacteriano/genética , Ácidos Grasos/química , Glucolípidos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , Análisis de Secuencia de ADN , Thermotoga/aislamiento & purificación
9.
Int J Syst Evol Microbiol ; 70(5): 3219-3225, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32271141

RESUMEN

A novel Gram-negative, non-spore-forming, vibrio-shaped, anaerobic, alkaliphilic, sulfate-reducing bacterium, designated strain PAR22NT, was isolated from sediment samples collected at an alkaline crater lake in Guanajuato (Mexico). Strain PAR22NT grew at temperatures between 15 and 37 °C (optimum, 32 °C), at pH between pH 8.3 and 10.1 (optimum, pH 9.0-9.6), and in the presence of NaCl up to 10 %. Pyruvate, 2-methylbutyrate and fatty acids (4-18 carbon atoms) were used as electron donors in the presence of sulfate as a terminal electron acceptor and were incompletely oxidized to acetate and CO2. Besides sulfate, both sulfite and elemental sulfur were also used as terminal electron acceptors and were reduced to sulfide. The predominant fatty acids were summed feature 10 (C18 : 1 ω7c and/or C18 : 1 ω9t and/or C18 : 1 ω12t), C18 : 1 ω9c and C16 : 0. The genome size of strain PAR22NT was 3.8 Mb including 3391 predicted genes. The genomic DNA G+C content was 49.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that it belongs to the genus Desulfobotulus within the class Deltaproteobacteria. Its closest phylogenetic relatives are Desulfobotulus alkaliphilus (98.4 % similarity) and Desulfobotulus sapovorans (97.9 % similarity). Based on phylogenetic, phenotypic and chemotaxonomic characteristics, we propose that the isolate represents a novel species of the genus Desulfobotulus with the name Desulfobotulus mexicanus sp. nov. The type strain is PAR22NT (=DSM 105758T=JCM 32146T).


Asunto(s)
Deltaproteobacteria/clasificación , Lagos/microbiología , Filogenia , Sulfatos/metabolismo , Álcalis , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Deltaproteobacteria/aislamiento & purificación , Ácidos Grasos/química , Sedimentos Geológicos/microbiología , México , Oxidación-Reducción , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Bacterias Reductoras del Azufre/clasificación , Bacterias Reductoras del Azufre/aislamiento & purificación
10.
Environ Microbiol ; 20(1): 281-292, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29124868

RESUMEN

Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspecies hydrogen transfer. Hydrogen production was higher in M. prima strain PhosAc3 cells co-cultured with SRB than in cells cultured alone in the presence of elemental sulfur. We propose that the efficient sugar-oxidizing metabolism by M. prima strain PhosAc3 in syntrophic association with a hydrogenotrophic sulfate-reducing bacterium can be extrapolated to all members of the Mesotoga genus. Genome comparison of Thermotogae members suggests that the metabolic difference between Mesotoga and Thermotoga species (sugar oxidation versus fermentation) is mainly due to the absence of the bifurcating [FeFe]-hydrogenase in the former. Such an obligate oxidative process for using sugars, unusual within prokaryotes, is the first reported within the Thermotogae. It is hypothesized to be of primary ecological importance for growth of Mesotoga spp. in the environments that they inhabit.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Desulfotomaculum/metabolismo , Desulfovibrio vulgaris/metabolismo , Bacilos Gramnegativos Anaerobios Rectos, Curvos y Espirales/metabolismo , Azúcares/metabolismo , Simbiosis/fisiología , Técnicas de Cocultivo , Fermentación/fisiología , Bacilos Gramnegativos Anaerobios Rectos, Curvos y Espirales/crecimiento & desarrollo , Hidrógeno/metabolismo , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sulfatos/metabolismo , Azufre/metabolismo
11.
Genome Announc ; 5(44)2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29097459

RESUMEN

Piezophilic Desulfovibrio profundus strain 500-1 was isolated in the Japan Sea from a sediment layer at 500-m depth under a water column of 1,000 m. Here, we report the genome sequence of this strain, which includes a 4,168,905-bp circular chromosome and two plasmids of 42,836 bp and 6,167 bp.

12.
Int J Syst Evol Microbiol ; 67(12): 4999-5005, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29039304

RESUMEN

Novel Gram-stain-negative, non-spore-forming, vibrio-shaped, anaerobic, alkaliphilic, sulfate-reducing bacteria, designated strains PAR180T and PAR190, were isolated from sediments collected at an alkaline crater lake in Guanajuato (Mexico). Strain PAR180T grew at temperatures between 15 and 40 °C (optimum 35 °C), and at pH between 8.3 and 10.4 (optimum 9). It was halotolerant, growing with up to 8 % (w/v) NaCl. Lactate, formate, pyruvate and ethanol were used as electron donors in the presence of sulfate and were incompletely oxidized to acetate and CO2. The isolate was able to grow with hydrogen and with CO2 as a carbon source. Beside sulfate, sulfite and thiosulfate were used as terminal electron acceptors. The isolate was able to grow by disproportionation of sulfite and thiosulfate, but not elemental sulfur, using acetate as a carbon source. The predominant fatty acids were C16 : 0, C16 : 1ω7c and summed feature 10 (C18 : 1ω7c and/or C18 : 1ω9t and/or C18 : 1ω12t). The DNA G+C content was 56.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that it belongs to the genus Desulfonatronum, class Deltaproteobacteria. Its closest relative is Desulfonatronum thiosulfatophilum (98.7 % 16S rRNA gene sequence similarity). The DNA-DNA relatedness value between strain PAR180T and the type strain of D. thiosulfatophilum was 37.1±2.5 %. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, the isolates is considered to represent a novel species of the genus Desulfonatronum, for which the name Desulfonatronum parangueonense sp. nov. is proposed. The type strain is PAR180T (=DSM 103602T=JCM 31598T).


Asunto(s)
Deltaproteobacteria/clasificación , Sedimentos Geológicos/microbiología , Lagos/microbiología , Filogenia , Álcalis , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Deltaproteobacteria/genética , Deltaproteobacteria/aislamiento & purificación , Desulfovibrio/genética , Ácidos Grasos/química , Concentración de Iones de Hidrógeno , México , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
13.
Int J Syst Evol Microbiol ; 67(9): 3162-3166, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28867000

RESUMEN

Several strains of sulfate-reducing bacteria were isolated from marine sediments recovered from Hann Bay (Senegal). All were related to members of the genus Desulfovibrio. A strictly anaerobic, mesophilic and moderately halophilic strain designated BLaC1T was further characterized. Cells of strain BLaC1T stained Gram-negative and were 0.5 µm wide and 2-4 µm long, motile, rod-shaped and non-spore-forming. The four major fatty acids were anteiso-C15 : 0, iso-C15 : 0, iso-C17 : 0 and anteiso-C17 : 0. Growth was observed from 15 to 45 °C (optimum 40 °C) and at pH 5.5-8 (optimum pH 7.5). The salinity range for growth was 5-65 g NaCl l-1 (optimum 30 g l-1). Yeast extract was required for growth. Strain BLaC1T was able to grow on lactate and acetate in the presence of sulfate as an electron acceptor. Sulfate, thiosulfate and sulfite could serve as terminal electron acceptors, but not fumarate, nitrate or elemental sulfur. The DNA G+C content was 55.8 mol%. 16S rRNA gene sequence analysis assigned strain BLaC1T to the family Desulfovibrionaceae; its closest relative was Desulfovibrio oxyclinae DSM 19275T (93.7 % similarity). On the basis of 16S rRNA gene sequence comparisons and physiological characteristics, strain BLaC1T is proposed as representing a novel species of Desulfovibrio, with the name Desulfovibrio senegalensis sp. nov. The type strain is BLaC1T (=DSM 101509T=JCM 31063T).


Asunto(s)
Desulfovibrio/clasificación , Sedimentos Geológicos/microbiología , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Desulfovibrio/genética , Desulfovibrio/aislamiento & purificación , Ácidos Grasos/química , Oxidación-Reducción , ARN Ribosómico 16S/genética , Senegal , Análisis de Secuencia de ADN , Sulfatos/metabolismo
14.
Gut Microbes ; 8(5): 413-427, 2017 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-28586253

RESUMEN

In humans, sleeping sickness (i.e. Human African Trypanosomiasis) is caused by the protozoan parasites Trypanosoma brucei gambiense (Tbg) in West and Central Africa, and T. b. rhodesiense in East Africa. We previously showed in vitro that Tbg is able to excrete/secrete a large number of proteins, including Translationally Controlled Tumor Protein (TCTP). Moreover, the tctp gene was described previously to be expressed in Tbg-infected flies. Aside from its involvement in diverse cellular processes, we have investigated a possible alternative role within the interactions occurring between the trypanosome parasite, its tsetse fly vector, and the associated midgut bacteria. In this context, the Tbg tctp gene was synthesized and cloned into the baculovirus vector pAcGHLT-A, and the corresponding protein was produced using the baculovirus Spodoptera frugicola (strain 9) / insect cell system. The purified recombinant protein rTbgTCTP was incubated together with bacteria isolated from the gut of tsetse flies, and was shown to bind to 24 out of the 39 tested bacteria strains belonging to several genera. Furthermore, it was shown to affect the growth of the majority of these bacteria, especially when cultivated under microaerobiosis and anaerobiosis. Finally, we discuss the potential for TCTP to modulate the fly microbiome composition toward favoring trypanosome survival.


Asunto(s)
Antibacterianos/metabolismo , Bacterias/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei gambiense/genética , Moscas Tse-Tse/microbiología , Animales , Bacterias/crecimiento & desarrollo , Biomarcadores de Tumor/genética , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Interacciones Huésped-Parásitos , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Tumoral Controlada Traslacionalmente 1
15.
Curr Microbiol ; 74(4): 449-454, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28213662

RESUMEN

Three sulfate-reducing bacterial strains designated SM40T, SM41, and SM43 were isolated from marine sediment in the region of Skhira located in the Gulf of Gabes (Tunisia). These strains grew in anaerobic media with phosphogypsum as a sulfate source and sodium lactate as an electron and carbon source. One of them, strain SM40T, was characterized by phenotypic and phylogenetic methods. Cells were ovoid, Gram-stain-negative and non-motile. The temperature limits for growth were 10 and 55 °C with an optimum at 35 °C and the pH range was 6.5-8.1 with an optimum at pH 7.5. Growth was observed at salinities ranging from 10 to 80 g NaCl l-1 with an optimum at 30 g NaCl l-1. Strain SM40T was able to utilize butanol, ethanol, formate, L-glucose, glycerol, lactate, propanol, propionate, and pyruvate as electron donors for the reduction of sulfate, sulfite, or thiosulfate to H2S. Without electron acceptors, strain SM40T fermented butanol and pyruvate. The DNA G+C content of strain SM40T was 52.6 mol %. Phylogenetic analysis based on the 16S rRNA gene sequence of the isolate revealed that strain SM40T was closely related to the species in the genus Desulfobulbus of the family Desulfobulbaceae. The sequence similarity between strain SM40 and Desulfobulbus marinus was 95.4%. The phylogenetic analysis, DNA G+C content, and differences in substrate utilization suggested that strain SM40 represents a new species of the genus Desulfobulbus, D. aggregans sp. nov. The type strain is strain SM40T (=DSM 28693T = JCM 19994T).


Asunto(s)
Sedimentos Geológicos/microbiología , Bacterias Reductoras del Azufre/metabolismo , Técnicas de Tipificación Bacteriana , Composición de Base/genética , ADN Bacteriano/genética , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Bacterias Reductoras del Azufre/clasificación , Bacterias Reductoras del Azufre/genética
16.
Int J Syst Evol Microbiol ; 63(Pt 11): 4237-4242, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23811135

RESUMEN

A novel anaerobic, chemo-organotrophic, sulfate-reducing bacterium, designated strain Olac 40(T), was isolated from a Tunisian wastewater digestor. Cells were curved, motile rods or vibrios (5.0-7.0×0.5 µm). Strain Olac 40(T) grew at temperatures between 15 and 50 °C (optimum 40 °C), and between pH 5.0 and 9.0 (optimum pH 7.1). It did not require NaCl for growth but tolerated it up to 50 g l(-1) (optimum 2 g l(-1)). In the presence of sulfate or thiosulfate, strain Olac 40(T) used lactate, pyruvate and formate as energy sources. Growth was observed on H2 only in the presence of acetate as carbon source. In the presence of sulfate or thiosulfate, the end products of lactate oxidation were acetate, sulfide and CO2. Sulfate, thiosulfate and sulfite were used as terminal electron acceptors, but not elemental sulfur, nitrate or nitrite. The genomic DNA G+C content of strain Olac 40(T) was 70 mol%. The profile of polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, aminophospholipid and four phospholipids. The main fatty acids were C16 : 0, anteiso-C15 : 0 and iso-C15 : 0. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Olac 40(T) was affiliated with the family Desulfovibrionaceae within the class Deltaproteobacteria. On the basis of 16S rRNA gene sequence comparisons and physiological characteristics, strain Olac 40(T) is proposed to be assigned to a novel species of the genus Desulfocurvus, for which the name Desulfocurvus thunnarius is proposed. The type strain is Olac 40(T) ( = DSM 26129(T) = JCM 18546(T)).


Asunto(s)
Deltaproteobacteria/clasificación , Filogenia , Bacterias Reductoras del Azufre/clasificación , Aguas Residuales/microbiología , Bacterias Anaerobias/clasificación , Bacterias Anaerobias/genética , Bacterias Anaerobias/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Reactores Biológicos/microbiología , Culinaria , ADN Bacteriano/genética , Deltaproteobacteria/genética , Deltaproteobacteria/aislamiento & purificación , Ácidos Grasos/química , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Oxidación-Reducción , Fosfolípidos/química , ARN Ribosómico 16S/genética , Sulfatos/metabolismo , Sulfitos/metabolismo , Bacterias Reductoras del Azufre/genética , Bacterias Reductoras del Azufre/aislamiento & purificación , Túnez
17.
Antonie Van Leeuwenhoek ; 104(2): 271-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23743634

RESUMEN

An anaerobic thermophilic bacterium designated CA9F1 was isolated from a thermal spring in France. Strain CA9F1 was observed to grow at temperatures between 55 and 70 °C (optimum 65 °C) and at pH between 6.8 and 9.5 (optimum pH 7.4). Strain CA9F1 does not require salt for growth (0-10 g l(-1) NaCl), with an optimum at 1 g l(-1). The DNA G+C content was determined to be 38.5 mol% (Tm). The major cellular fatty acids identified were C15:0, C16:0, C17:0 iso. Based on phenotypic, chemotaxonomic and genotypic properties, strain CA9F1 was identified as Thermovenabulum gondwanense and this species was studied in more detail. Strain CA9F1 is a Gram-positive bacterium which forms a complex and regular multilayered cell wall structure, here characterised as being due to the presence of an S-layer. The network covers the entire cell surface and forms a hexagonal structure resembling that observed for Deinococcus radiodurans. The main protein component of the S-layer possesses domains comparable to that of the S-layer protein of Halothermothrix orenii. The characteristics of the strain were compared to that of T. gondwanese R270(T) isolated from microbial mats thriving in the thermal waters of a Great Artesian Basin bore runoff channel at 66 °C, in Australia. Significant differences were observed between CA9F1 and the type strain. One of the major physiological differences is the inability of CA9F1 to reduce Fe(III). An emended description of T. gondwanense is given.


Asunto(s)
Bacterias Grampositivas/clasificación , Bacterias Grampositivas/aislamiento & purificación , Manantiales de Aguas Termales/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Secuencia de Bases , Pared Celular/química , ADN Bacteriano/genética , Ácidos Grasos/análisis , Francia , Bacterias Grampositivas/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA