RESUMEN
Olive (Olea europaea L.) is an evergreen xerophytic tree characterizing vegetative landscape and historical-cultural identity of the Mediterranean Basin. More than 2600 cultivars constitute the rich genetic patrimony of the species cultivated in approximately 60 countries. As a subtropical species, the olive tree is quite sensitive to low temperatures, and air temperature is the most critical environmental factor limiting olive tree growth and production. In this present review, we explored the detrimental effects caused of low temperatures on olive cultivars, and analyzed the most frequently experimental procedures used to evaluate cold stress. Then, current findings freezing stress physiology and gene are summarized in olive tree, with an emphasis on adaptive mechanisms for cold tolerance. This review might clear the way for new research on adaptive mechanisms for cold acclimation and for improvement of olive growing management.
RESUMEN
The healing effects of the forest are increasingly being valued for their contribution to human psychological and physiological health, motivating further advances aimed at improving knowledge of relevant forest resources. Biogenic volatile organic compounds, emitted by the plants and accumulating in the forest atmosphere, are essential contributors to the healing effects of the forest, and represent the focus of this study. Using a photoionization detector, we investigated the high frequency variability, in time and space, of the concentration of total volatile organic compounds on a hilly site as well as along forest paths and long hiking trails in the Italian northern Apennines. The scale of concentration variability was found to be comparable to absolute concentration levels within time scales of less than one hour and spatial scales of several hundred meters. During daylight hours, on clear and calm days, the concentration peaked from noon to early afternoon, followed by early morning, with the lowest levels in the late afternoon. These results were related to meteorological variables including the atmospheric vertical stability profile. Moreover, preliminary evidence pointed to higher concentrations of volatile organic compounds in forests dominated by conifer trees in comparison to pure beech forests.
Asunto(s)
Atmósfera/química , Bosques , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente , Humanos , Italia , Análisis Espacio-Temporal , Árboles/fisiologíaRESUMEN
Climatic factors and weather type frequencies affecting Tuscany are examined to discriminate between vintages ranked into the upper- and lower-quartile years as a consensus from six rating sources of Chianti wine during the period 1980 to 2011. These rankings represent a considerable improvement on any individual publisher ranking, displaying an overall good consensus for the best and worst vintage years. Climate variables are calculated and weather type frequencies are matched between the eight highest and the eight lowest ranked vintages in the main phenological phases of Sangiovese grapevine. Results show that higher heat units; mean, maximum and minimum temperature; and more days with temperature above 35 °C were the most important discriminators between good- and poor-quality vintages in the spring and summer growth phases, with heat units important during ripening. Precipitation influences on vintage quality are significant only during veraison where low precipitation amounts and precipitation days are important for better quality vintages. In agreement with these findings, weather type analysis shows good vintages are favoured by weather type 4 (more anticyclones over central Mediterranean Europe (CME)), giving warm dry growing season conditions. Poor vintages all relate to higher frequencies of either weather type 3, which, by producing perturbation crossing CME, favours cooler and wetter conditions, and/or weather type 7 which favours cold dry continental air masses from the east and north east over CME. This approach shows there are important weather type frequency differences between good- and poor-quality vintages. Trend analysis shows that changes in weather type frequencies are more important than any due to global warming.