Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
2.
J Exp Clin Cancer Res ; 43(1): 151, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38812026

RESUMEN

BACKGROUND: SMYD3 has been found implicated in cancer progression. Its overexpression correlates with cancer growth and invasion, especially in gastrointestinal tumors. SMYD3 transactivates multiple oncogenic mechanisms, favoring cancer development. Moreover, it was recently shown that SMYD3 is required for DNA restoration by promoting homologous recombination (HR) repair. METHODS: In cellulo and in vivo models were employed to investigate the role of SMYD3 in cancer chemoresistance. Analyses of SMYD3-KO cells, drug-resistant cancer cell lines, patients' residual gastric or rectal tumors that were resected after neoadjuvant therapy and mice models were performed. In addition, the novel SMYD3 covalent inhibitor EM127 was used to evaluate the impact of manipulating SMYD3 activity on the sensitization of cancer cell lines, tumorspheres and cancer murine models to chemotherapeutics (CHTs). RESULTS: Here we report that SMYD3 mediates cancer cell sensitivity to CHTs. Indeed, cancer cells lacking SMYD3 functions showed increased responsiveness to CHTs, while restoring its expression promoted chemoresistance. Specifically, SMYD3 is essential for the repair of CHT-induced double-strand breaks as it methylates the upstream sensor ATM and allows HR cascade propagation through CHK2 and p53 phosphorylation, thereby promoting cancer cell survival. SMYD3 inhibition with the novel compound EM127 showed a synergistic effect with CHTs in colorectal, gastric, and breast cancer cells, tumorspheres, and preclinical colorectal cancer models. CONCLUSIONS: Overall, our results show that targeting SMYD3 may be an effective therapeutic strategy to overcome chemoresistance.


Asunto(s)
Daño del ADN , Reparación del ADN , Resistencia a Antineoplásicos , N-Metiltransferasa de Histona-Lisina , Humanos , Animales , Ratones , Reparación del ADN/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Femenino
3.
Front Chem ; 12: 1378233, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38591056

RESUMEN

Introduction: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer still lacking effective treatment options. Chemotherapy in combination with immunotherapy can restrict tumor progression and repolarize the tumor microenvironment towards an anti-tumor milieu, improving clinical outcome in TNBC patients. The chemotherapeutic drug paclitaxel has been shown to induce immunogenic cell death (ICD), whereas inhibitors of the indoleamine 2,3- dioxygenase 1 (IDO1) enzyme, whose expression is shared in immune regulatory and tumor cells, have been revealed to enhance the anti-tumor immune response. However, poor bioavailability and pharmacokinetics, off-target effects and hurdles in achieving therapeutic drug concentrations at the target tissue often limit the effectiveness of combination therapies. Methods: This work describes the development of novel biomimetic and carrier-free nanobinders (NBs) loaded with both paclitaxel and the IDO1 inhibitor NLG919 in the form of bioresponsive and biomimetic prodrugs. A fine tuning of the preparation conditions allowed to identify NB@5 as the most suitable nanoformulation in terms of reproducibility, stability and in vitro effectiveness. Results and discussion: Our data show that NB@5 effectively binds to HSA in cell-free experiments, demonstrating its protective role in the controlled release of drugs and suggesting the potential to exploit the protein as the endogenous vehicle for targeted delivery to the tumor site. Our study successfully proves that the drugs encapsulated within the NBs are preferentially released under the altered redox conditions commonly found in the tumor microenvironment, thereby inducing cell death, promoting ICD, and inhibiting IDO1.

4.
Arch Pharm (Weinheim) ; 357(7): e2300575, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593283

RESUMEN

A series of tacrine-donepezil hybrids were synthesized as potential multifunctional anti-Alzheimer's disease (AD) compounds. For this purpose, tacrine and the benzylpiperidine moiety of donepezil were fused with a hydrazone group to achieve a small library of tacrine-donepezil hybrids. In agreement with the design, all compounds showed inhibitory activity toward both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values in the low micromolar range. Kinetic studies on the most potent cholinesterase (ChE) inhibitors within the series showed a mixed-type inhibition mechanism on both enzymes. Also, the docking studies indicated that the compounds inhibit ChEs by dual binding site (DBS) interactions. Notably, tacrine-donepezil hybrids also exhibited significant neuroprotection against H2O2-induced cell death in a differentiated human neuroblastoma (SH-SY5Y) cell line at concentrations close to their IC50 values on ChEs and showed high to medium blood-brain barrier (BBB) permeability on human cerebral microvascular endothelial cells (HBEC-5i). Besides, the compounds do not cause remarkable toxicity in a human hepatocellular carcinoma cell line (HepG2) and SH-SY5Y cells. Additionally, the compounds were predicted to also have good bioavailability. Among the tested compounds, H4, H16, H17, and H24 stand out with their biological profile. Taken together, the proposed novel tacrine-donepezil scaffold represents a promising starting point for the development of novel anti-ChE multifunctional agents against AD.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Barrera Hematoencefálica , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Donepezilo , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores , Tacrina , Tacrina/farmacología , Tacrina/química , Humanos , Donepezilo/farmacología , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Butirilcolinesterasa/metabolismo , Relación Estructura-Actividad , Acetilcolinesterasa/metabolismo , Barrera Hematoencefálica/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Células Hep G2 , Línea Celular Tumoral
5.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542146

RESUMEN

Diabetic kidney disease (DKD) is a major cause of morbidity and mortality in individuals with type 2 diabetes mellitus (T2DM). The aim of this study was to investigate whether albumin structural alterations correlate with DKD severity and evaluate whether native and reduced albumin concentrations could complement the diagnosis of DKD. To this end, one hundred and seventeen T2DM patients without (n = 42) and with (n = 75) DKD (DKD I-III upon KDIGO classification) were evaluated; the total albumin concentration (tHA) was quantified by a bromocresol green assay, while structural alterations were profiled via liquid chromatography-high-resolution mass spectrometry (LC-HRMS). The concentrations of native albumin (eHA, effective albumin) and reduced albumin (rHA) were subsequently assessed. The HRMS analyses revealed a reduced relative amount of native albumin in DKD patients along with an increased abundance of altered forms, especially those bearing oxidative modifications. Accordingly, both eHA and rHA values varied during the stages of progressive renal failure, and these alterations were dose-dependently correlated with renal dysfunction. A ROC curve analysis revealed a significantly greater sensitivity and specificity of eHA and rHA than of tHA for diagnosing DKD. Importantly, according to the multivariate logistic regression analysis, the eHA was identified as an independent predictor of DKD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/complicaciones , Tasa de Filtración Glomerular , Sensibilidad y Especificidad , Riñón
6.
Eur J Med Chem ; 261: 115803, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37734258

RESUMEN

Neurodegenerative processes characterizing Alzheimer's disease (AD) are strictly related to the impairment of cholinergic and glutamatergic neurotransmitter systems which provoke synaptic loss. These experimental evidences still represent the foundation of the actual standard-of-care treatment for AD, albeit palliative, consisting on the coadministration of an acetylcholinesterase inhibitor and the NMDAR antagonist memantine. In looking for more effective treatments, we previously developed a series of galantamine-memantine hybrids where compound 1 (ARN14140) emerged with the best-balanced action toward the targets of interest paired to neuroprotective efficacy in a murine AD model. Unfortunately, it showed a suboptimal pharmacokinetic profile, which required intracerebroventricular administration for in vivo studies. In this work we designed and synthesized new hybrids with fewer rotatable bonds, which is related to higher brain exposure. Particularly, compound 2, bearing a double bond in the tether, ameliorated the biological profile of compound 1 in invitro studies, increasing cholinesterases inhibitory potencies and selective antagonism toward excitotoxic-related GluN1/2B NMDAR over beneficial GluN1/2A NMDAR. Furthermore, it showed increased plasma stability and comparable microsomal stability in vitro, paired with lower half-life and faster clearance in vivo. Remarkably, pharmacokinetic evaluations of compound 2 showed a promising increase in brain uptake in comparison to compound 1, representing the starting point for further chemical optimizations.


Asunto(s)
Enfermedad de Alzheimer , Galantamina , Humanos , Ratones , Animales , Galantamina/farmacocinética , Memantina/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Acetilcolinesterasa , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Receptores de N-Metil-D-Aspartato
7.
Bioorg Med Chem ; 91: 117419, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37487339

RESUMEN

Multi-target drug discovery is one of the most active fields in the search for new drugs against Alzheimer's disease (AD). This is because the complexity of AD pathological network might be adequately tackled by multi-target-directed ligands (MTDLs) aimed at modulating simultaneously multiple targets of such a network. In a continuation of our efforts to develop MTDLs for AD, we have been focusing on the molecular hybridization of the acetylcholinesterase inhibitor tacrine with the aim of expanding its anti-AD profile. Herein, we manipulated the structure of a previously developed tacrine-quinone hybrid (1). We designed and synthesized a novel set of MTDLs (2-6) by replacing the naphthoquinone scaffold of 1 with that of 2,5,8-quinolinetrione. The most interesting hybrid 3 inhibited cholinesterase enzymes at nanomolar concentrations. In addition, 3 exerted antioxidant effects in menadione-induced oxidative stress of SH-SY5Y cells. Importantly, 3 also showed low hepatotoxicity and good anti-amyloid aggregation properties. Remarkably, we uncovered the potential of the quinolinetrione scaffold, as a novel anti-amyloid aggregation and antioxidant motif to be used in further anti-AD MTDL drug discovery endeavors.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Tacrina/farmacología , Tacrina/química , Enfermedad de Alzheimer/tratamiento farmacológico , Acetilcolinesterasa , Ligandos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Antioxidantes/farmacología , Péptidos beta-Amiloides
8.
Microb Cell Fact ; 22(1): 45, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890519

RESUMEN

BACKGROUND: Exopolysaccharides (EPS) secreted by beneficial lactobacilli exert a plethora of positive activities, but little is known about their effects on biofilms of opportunistic vaginal pathogens and especially on biofilms of lactobacilli themselves. Here, the EPS produced by six vaginal lactobacilli, belonging to Lactobacillus crispatus (BC1, BC4, BC5) and Lactobacillus gasseri (BC9, BC12, BC14) species were isolated from cultural supernatants and lyophilized. RESULTS: Lactobacillus EPS were chemically characterized in terms of monosaccharide composition by liquid chromatography (LC) analysis coupled to UV and mass spectrometry (MS) detection. Moreover, the ability of EPS (0.1, 0.5, 1 mg/mL) to stimulate the biofilm formation of lactobacilli and to inhibit the formation of pathogens' biofilms was evaluated by crystal violet (CV) staining and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Isolated EPS (yields 133-426 mg/L) were heteropolysaccharides mainly composed of D-mannose (40-52%) and D-glucose (11-30%). For the first time we demonstrated that Lactobacillus EPS were able to stimulate in a dose-dependent manner (p < 0.05) the formation of biofilms of ten strains belonging to L. crispatus, L. gasseri and Limosilactobacillus vaginalis species, in terms of cell viability (84-282% increase at 1 mg/mL) and especially biofilm biomass (40-195% increase at 1 mg/mL), quantified with MTT assay and CV staining, respectively. EPS released from L. crispatus and L. gasseri were found to better stimulate the biofilms of the same producer species rather than that of other species, including producing strains themselves and other strains. Conversely, the biofilm formation of bacterial (Escherichia coli, Staphylococcus spp., Enterococcus spp. and Streptococcus agalactiae) and fungal (Candida spp.) pathogens was inhibited. The anti-biofilm activity was dose-dependent and was more marked for L. gasseri-derived EPS (inhibition up to 86%, 70%, and 58% at 1 mg/mL, 0.5 mg/mL, and 0.1 mg/mL, respectively), whilst L. crispatus-derived EPS resulted overall less efficient (inhibition up to 58% at 1 mg/mL and 40% at 0.5 mg/mL) (p < 0.05). CONCLUSIONS: Lactobacilli-derived EPS favour the biofilm formation of lactobacilli preventing, at the same time, that of opportunistic pathogens. These results support the possible employment of EPS as postbiotics in medicine as a therapeutic/preventive strategy to counteract vaginal infections.


Asunto(s)
Lactobacillus gasseri , Lactobacillus , Vagina/microbiología , Biopelículas , Candida , Violeta de Genciana/farmacología
9.
Talanta ; 257: 124332, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36773512

RESUMEN

In this paper, the development of efficient enantioselective HPLC methods for the analysis of five benzofuran-substituted phenethylamines, two substituted tryptamines, and three substituted cathinones is described. For the first time, reversed-phase (eluents made up with acidic water-methanol solutions) and polar-ionic (eluent made up with an acetonitrile-methanol solution incorporating both an acidic and a basic additive) conditions fully compatible with mass spectrometry (MS) detectors were applied with a chiral stationary phase (CSP) incorporating the (+)-(18-crown-6)-tetracarboxylic acid chiral selector. Enantioresolution was achieved for nine compounds with α and RS factors up to 1.32 and 5.12, respectively. Circular dichroism (CD) detection, CD spectroscopy in stopped-flow mode and quantum mechanical (QM) calculations were successfully employed to investigate the absolute stereochemistry of mephedrone, methylone and butylone and allowed to establish a (R)<(S) enantiomeric elution order for these compounds on the chosen CSP. Whole blood miniaturized samples collected by means of volumetric absorptive microsampling (VAMS) technology and fortified with the target analytes were extracted following an optimized protocol and effectively analysed by means of an ultra-high performance liquid chromatography-MS system. By this way a proof-of-concept procedure was applied, demonstrating the suitability of the method for quali-quantitative enantioselective assessment of the selected psychoactive substances in advanced biological microsamples. VAMS microsamplers including a polypropylene handle topped with a small tip of a polymeric porous material were used and allowed to volumetrically collect small aliquots of whole blood (10 µL) independently from its density. Highly appreciable volumetric accuracy (bias, in the -8.7-8.1% range) and precision (% CV, in the 2.8-5.9% range) turned out.


Asunto(s)
Metanol , Espectrometría de Masas en Tándem , Estereoisomerismo , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Cromatografía Líquida de Alta Presión/métodos
11.
ACS Med Chem Lett ; 13(11): 1812-1818, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36385935

RESUMEN

Catechols have been largely investigated as antiaggregating agents toward ß-amyloid peptide. Herein, as a follow up of a previous series of hydroxycinnamic derivatives, we synthesized a small set of dihydroxy isomers for exploring the role of the reciprocal position of the two hydroxyl functions at a molecular level. Para- and ortho-derivatives effectively reduced amyloid fibrillization, while the meta-analogue was devoid of any activity in this respect. Electrochemical analyses showed that the antiaggregating potency correlates with the oxidation potential, hence indicating the proelectrophilic character as a prerequisite for activity. Interestingly, mass spectrometry studies and quantum mechanical calculations revealed different modes of action for active para- and ortho-derivatives, involving covalent or noncovalent interactions with ß-amyloid. The distinctive mode of action is also translated into a different cytotoxicity profile. This work clearly shows how apparently minimal structural modifications can completely change the compound behavior and generate alternative mechanisms of action of proelectrophilic chemical probes.

12.
ACS Chem Neurosci ; 13(23): 3314-3329, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36445009

RESUMEN

Alzheimer's disease (AD), the most common type of dementia, currently represents an extremely challenging and unmet medical need worldwide. Amyloid-ß (Aß) and Tau proteins are prototypical AD hallmarks, as well as validated drug targets. Accumulating evidence now suggests that they synergistically contribute to disease pathogenesis. This could not only help explain negative results from anti-Aß clinical trials but also indicate that therapies solely directed at one of them may have to be reconsidered. Based on this, herein, we describe the development of a focused library of 2,4-thiazolidinedione (TZD)-based bivalent derivatives as dual Aß and Tau aggregation inhibitors. The aggregating activity of the 24 synthesized derivatives was tested in intact Escherichia coli cells overexpressing Aß42 and Tau proteins. We then evaluated their neuronal toxicity and ability to cross the blood-brain barrier (BBB), together with the in vitro interaction with the two isolated proteins. Finally, the most promising (most active, nontoxic, and BBB-permeable) compounds 22 and 23 were tested in vivo, in a Drosophila melanogaster model of AD. The carbazole derivative 22 (20 µM) showed extremely encouraging results, being able to improve both the lifespan and the climbing abilities of Aß42 expressing flies and generating a better outcome than doxycycline (50 µM). Moreover, 22 proved to be able to decrease Aß42 aggregates in the brains of the flies. We conclude that bivalent small molecules based on 22 deserve further attention as hits for dual Aß/Tau aggregation inhibition in AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Drosophila , Proteínas tau , Drosophila melanogaster
13.
Eur J Med Chem ; 243: 114683, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36116234

RESUMEN

Recent findings support the hypothesis that inhibition of SMYD3 methyltransferase may be a therapeutic avenue for some of the deadliest cancer types. Herein, active site-selective covalent SMYD3 inhibitors were designed by introducing an appropriate reactive cysteine trap into reversible first-generation SMYD3 inhibitors. The 4-aminopiperidine derivative EM127 (11C) bearing a 2-chloroethanoyl group as reactive warhead showed selectivity for Cys186, located in the substrate/histone binding pocket. Selectivity towards Cys186 was retained even at high inhibitor/enzyme ratio, as shown by mass spectrometry. The mode of interaction with the SMYD3 substrate/histone binding pocket was revealed by crystallographic studies. In enzymatic assays, 11C showed a stronger SMYD3 inhibitory effect compared to the reference inhibitor EPZ031686. Remarkably, 11C attenuated the proliferation of MDA-MB-231 breast cancer cell line at the same low micromolar range of concentrations that reduced SMYD3 mediated ERK signaling in HCT116 colorectal cancer and MDA-MB-231 breast cancer cells. Furthermore, 11C (5 µM) strongly decreased the steady-state mRNA levels of genes important for tumor biology such as cyclin dependent kinase 2, c-MET, N-cadherin and fibronectin 1, all known to be regulated, at least in part, by SMYD3. Thus, 11C is as a first example of second generation SMYD3 inhibitors; this agent represents a covalent and a site specific SMYD3 binder capable of potent and prolonged attenuation of methyltransferase activity.


Asunto(s)
Neoplasias de la Mama , N-Metiltransferasa de Histona-Lisina , Humanos , Femenino , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas , Línea Celular Tumoral
14.
Bioorg Chem ; 129: 106152, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36155094

RESUMEN

The complexity of neurodegenerative diseases, among which Alzheimer's disease plays a pivotal role, poses one of the tough therapeutic challenges of present time. In this perspective, a multitarget approach appears as a promising strategy to simultaneously interfere with different defective pathways. In this paper, a structural simplification plan was performed on our previously reported multipotent polycyclic compounds, in order to obtain a simpler pharmacophoric central core with improved pharmacokinetic properties, while maintaining the modulating activity on neuronal calcium channels and glycogen synthase kinase 3-beta (GSK-3ß), as validated targets to combat Alzheimer's disease. The molecular pruning approach applied here led to tetrahydroisoindole-dione (1), tetrahydromethanoisoindole-dione (2) and tetrahydroepoxyisoindole-dione (3) structures, easily affordable by Diels-Alder cycloaddition. Preliminary data indicated structure 3 as the most appropriate, thus a SAR study was performed by introducing different substituents, selected on the basis of the commercial availability of the furan derivatives required for the synthetic procedure. The results indicated compound 10 as a promising, structurally atypical, safe and BBB-penetrating Cav modulator, inhibiting both L- and N-calcium channels, likely responsible for the Ca2+ overload observed in Alzheimer's disease. In a multitarget perspective, compound 11 appeared as an effective prototype, endowed with improved Cav inhibitory activity, with respect to the reference drug nifedipine, and encouraging modulating activity on GSK-3ß.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Glucógeno Sintasa Quinasa 3 beta , Enfermedad de Alzheimer/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Canales de Calcio , Neuronas
15.
J Med Chem ; 65(6): 4909-4925, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35271276

RESUMEN

With innumerable clinical failures of target-specific drug candidates for multifactorial diseases, such as Alzheimer's disease (AD), which remains inefficiently treated, the advent of multitarget drug discovery has brought a new breath of hope. Here, we disclose a class of 6-chlorotacrine (huprine)-TPPU hybrids as dual inhibitors of the enzymes soluble epoxide hydrolase (sEH) and acetylcholinesterase (AChE), a multitarget profile to provide cumulative effects against neuroinflammation and memory impairment. Computational studies confirmed the gorge-wide occupancy of both enzymes, from the main site to a secondary site, including a so far non-described AChE cryptic pocket. The lead compound displayed in vitro dual nanomolar potencies, adequate brain permeability, aqueous solubility, human microsomal stability, lack of neurotoxicity, and it rescued memory, synaptic plasticity, and neuroinflammation in an AD mouse model, after low dose chronic oral administration.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Epóxido Hidrolasas , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Modelos Animales de Enfermedad , Epóxido Hidrolasas/antagonistas & inhibidores , Ratones
16.
Cancers (Basel) ; 14(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35205627

RESUMEN

Exploiting the tumor environment features (EPR effect, elevated glutathione, reactive oxygen species levels) might allow attaining a selective and responsive carrier capable of improving the therapeutic outcome. To this purpose, the in situ covalent binding of drugs and nanoparticles to circulating human serum albumin (HSA) might represent a pioneering approach to achieve an effective strategy. This study describes the synthesis, in vitro and in vivo evaluation of bioresponsive HSA-binding nanoparticles (MAL-PTX2S@Pba), co-delivering two different paclitaxel (PTX) prodrugs and the photosensitizer pheophorbide a (Pba), for the combined photo- and chemo-treatment of breast cancer. Stable and reproducible MAL-PTX2S@Pba nanoparticles with an average diameter of 82 nm and a PTX/Pba molar ratio of 2.5 were obtained by nanoprecipitation. The in vitro 2D combination experiments revealed that MAL-PTX2S@Pba treatment induces a strong inhibition of cell viability of MDA-MB-231, MCF7 and 4T1 cell lines, whereas 3D experiments displayed different trends: while MAL-PTX2S@Pba effectiveness was confirmed against MDA-MB-231 spheroids, the 4T1 model exhibited marked resistance. Lastly, despite using a low PTX-PDT regimen (e.g., 8.16 mg/Kg PTX and 2.34 mg/Kg Pba), our formulation showed to foster primary tumor reduction and curb lung metastases growth in 4T1 tumor-bearing mice, thus setting the basis for further preclinical validations.

17.
RSC Med Chem ; 12(7): 1154-1163, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34355181

RESUMEN

As part of our efforts to develop sustainable drugs for Alzheimer's disease (AD), we have been focusing on the inexpensive and largely available cashew nut shell liquid (CNSL) as a starting material for the identification of new acetylcholinesterase (AChE) inhibitors. Herein, we decided to investigate whether cardanol, a phenolic CNSL component, could serve as a scaffold for improved compounds with concomitant anti-amyloid and antioxidant activities. Ten new derivatives, carrying the intact phenolic function and an aminomethyl functionality, were synthesized and first tested for their inhibitory potencies towards AChE and butyrylcholinesterase (BChE). 5 and 11 were found to inhibit human BChE at a single-digit micromolar concentration. Transmission electron microscopy revealed the potential of five derivatives to modulate Aß aggregation, including 5 and 11. In HORAC assays, 5 and 11 performed similarly to standard antioxidant ferulic acid as hydroxyl scavenging agents. Furthermore, in in vitro studies in neuronal cell cultures, 5 and 11 were found to effectively inhibit reactive oxygen species production at a 10 µM concentration. They also showed a favorable initial ADME/Tox profile. Overall, these results suggest that CNSL is a promising raw material for the development of potential disease-modifying treatments for AD.

18.
Eur J Med Chem ; 225: 113779, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34418785

RESUMEN

Starting from six potential hits identified in a virtual screening campaign directed to a cryptic pocket of BACE-1, at the edge of the catalytic cleft, we have synthesized and evaluated six hybrid compounds, designed to simultaneously reach BACE-1 secondary and catalytic sites and to exert additional activities of interest for Alzheimer's disease (AD). We have identified a lead compound with potent in vitro activity towards human BACE-1 and cholinesterases, moderate Aß42 and tau antiaggregating activity, and brain permeability, which is nontoxic in neuronal cells and zebrafish embryos at concentrations above those required for the in vitro activities. This compound completely restored short- and long-term memory in a mouse model of AD (SAMP8) relative to healthy control strain SAMR1, shifted APP processing towards the non-amyloidogenic pathway, reduced tau phosphorylation, and increased the levels of synaptic proteins PSD95 and synaptophysin, thereby emerging as a promising disease-modifying, cognition-enhancing anti-AD lead.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Aminoquinolinas/farmacología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/metabolismo , Aminoquinolinas/síntesis química , Aminoquinolinas/química , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Compuestos Heterocíclicos de 4 o más Anillos/química , Humanos , Simulación de Dinámica Molecular , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Proteínas tau/antagonistas & inhibidores , Proteínas tau/metabolismo
19.
Molecules ; 26(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34299650

RESUMEN

A combination of flash chromatography, solid phase extraction, high-performance liquid chromatography, and in vitro bioassays was used to isolate phytocomponents endowed with anticholinesterase activity in extract from Phyllanthus muellarianus. Phytocomponents responsible for the anti-cholinesterase activity of subfractions PMF1 and PMF4 were identified and re-assayed to confirm their activity. Magnoflorine was identified as an active phytocomponent from PMF1 while nitidine was isolated from PMF4. Magnoflorine was shown to be a selective inhibitor of human butyrylcholinesterase-hBChE (IC50 = 131 ± 9 µM and IC50 = 1120 ± 83 µM, for hBuChE and human acetylcholinesterase-hAChE, respectively), while nitidine showed comparable inhibitory potencies against both enzymes (IC50 = 6.68 ± 0.13 µM and IC50 = 5.31 ± 0.50 µM, for hBChE and hAChE, respectively). When compared with the commercial anti-Alzheimer drug galanthamine, nitidine was as potent as galanthamine against hAChE and one order of magnitude more potent against hBuChE. Furthermore, nitidine also showed significant, although weak, antiaggregating activity towards amyloid-ß self-aggregation.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa , Simulación del Acoplamiento Molecular , Phyllanthus/química , Corteza de la Planta/química , Extractos Vegetales/química , Acetilcolinesterasa/química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/aislamiento & purificación , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/química , Humanos , Estructura Molecular
20.
Molecules ; 26(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071439

RESUMEN

In the last years, the connection between the endocannabinoid system (eCS) and neuroprotection has been discovered, and evidence indicates that eCS signaling is involved in the regulation of cognitive processes and in the pathophysiology of Alzheimer's disease (AD). Accordingly, pharmacotherapy targeting eCS could represent a valuable contribution in fighting a multifaceted disease such as AD, opening a new perspective for the development of active agents with multitarget potential. In this paper, a series of coumarin-based carbamic and amide derivatives were designed and synthesized as multipotent compounds acting on cholinergic system and eCS-related targets. Indeed, they were tested with appropriate enzymatic assays on acetyl and butyryl-cholinesterases and on fatty acid amide hydrolase (FAAH), and also evaluated as cannabinoid receptor (CB1 and CB2) ligands. Moreover, their ability to reduce the self-aggregation of beta amyloid protein (Aß42) was assessed. Compounds 2 and 3, bearing a carbamate function, emerged as promising inhibitors of hAChE, hBuChE, FAAH and Aß42 self-aggregation, albeit with moderate potencies, while the amide 6 also appears a promising CB1/CB2 receptors ligand. These data prove for the new compounds an encouraging multitarget profile, deserving further evaluation.


Asunto(s)
Cannabinoides/química , Receptores Colinérgicos/química , Enfermedad de Alzheimer/tratamiento farmacológico , Amidohidrolasas , Péptidos beta-Amiloides/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Carbamatos/farmacología , Química Farmacéutica/métodos , Colinérgicos , Cumarinas/uso terapéutico , Diseño de Fármacos , Endocannabinoides/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Conformación Proteica , Ratas , Receptores de Cannabinoides , Rivastigmina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...