Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMJ Neurol Open ; 6(2): e000765, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175939

RESUMEN

Introduction: Epilepsy surgery is the only curative treatment for patients with drug-resistant focal epilepsy. Stereoelectroencephalography (SEEG) is the gold standard to delineate the seizure-onset zone (SOZ). However, up to 40% of patients are subsequently not operated as no focal non-eloquent SOZ can be identified. The 5-SENSE Score is a 5-point score to predict whether a focal SOZ is likely to be identified by SEEG. This study aims to validate the 5-SENSE Score, improve score performance by incorporating auxiliary diagnostic methods and evaluate its concordance with expert decisions. Methods and analysis: Non-interventional, observational, multicentre, prospective study including 200 patients with drug-resistant epilepsy aged ≥15 years undergoing SEEG for identification of a focal SOZ and 200 controls at 22 epilepsy surgery centres worldwide. The primary objective is to assess the diagnostic accuracy and generalisability of the 5-SENSE in predicting focality in SEEG in a prospective cohort. Secondary objectives are to optimise score performance by incorporating auxiliary diagnostic methods and to analyse concordance of the 5-SENSE Score with the expert decisions made in the multidisciplinary team discussion. Ethics and dissemination: Prospective multicentre validation of the 5-SENSE score may lead to its implementation into clinical practice to assist clinicians in the difficult decision of whether to proceed with implantation. This study will be conducted in accordance with the Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans (2014). We plan to publish the study results in a peer-reviewed full-length original article and present its findings at scientific conferences. Trial registration number: NCT06138808.

2.
Neurophysiol Clin ; 54(5): 103005, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39029213

RESUMEN

In patients with refractory epilepsy, the clinical interpretation of stereoelectroencephalographic (SEEG) signals is crucial to delineate the epileptogenic network that should be targeted by surgery. We propose a pipeline of patient-specific computational modeling of interictal epileptic activity to improve the definition of regions of interest. Comparison between the computationally defined regions of interest and the resected region confirmed the efficiency of the pipeline. This result suggests that computational modeling can be used to reconstruct signals and aid clinical interpretation.

3.
Front Neurol ; 15: 1419835, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962474

RESUMEN

Objective: To analyze the local field potentials (LFPs) in patients with focal drug-resistant epilepsy (DRE) from the anterior nucleus of the thalamus (ANT) during inter-ictal state and seizure state. Method: ANT stereotactic EEG (SEEG) recordings were studied in four patients with focal temporal lobe epilepsy. SEEG data was classified as inter-ictal and ictal state and sub-categorized into electrographic (ESz), focal aware seizure (FAS), focal with impaired awareness (FIA), or focal to bilateral tonic-clonic seizure (FBTC). LFP was analyzed at 4 Hz, 8 Hz, 16 Hz, 32 Hz, high gamma (100 Hz), and ripples (200 Hz) using spectrogram analysis and a statistical comparison of normalized power spectral density (PSD) averaged during seizures versus pre-ictal baseline segments. Result: The LFP recordings were analyzed for 162 seizures (127 ESz, 23 FAS, 6 FIA, and 6 FBTC). Based on time-frequency data (spectrogram), a broad band of activity, occurring between 2 and 6 Hz and centered at 4 Hz, and thin-band activity occurring specifically at 8 Hz on the frequency spectrogram were observed during the inter-ictal state. Statistically significant changes in LFP-PSD were seen for FAS, FIA, and FBTC. We observed a significant gain in LFP at the lower frequency band during FAS at 4 Hz, FIA, and FBTC at 4, 8, and 16 Hz while also observing increases at higher frequencies during FBTC at 100 and 200 Hz and a decrease during FAS seizures at 32 Hz. In contrast, no significant change in LFP power was seen for electrographic seizures. Interpretation: Our observations from a limited dataset indicate that all clinical seizure types, but not electrographic seizures, caused a change in ANT-LFP based on the magnitude of the associated power spectral density (PSD). Future work will be needed to validate the use of ANT-LFP at these frequencies as accurate measurements of seizure occurrence and severity. This work represents a first step toward understanding ANT thalamic LFP patterns during focal seizures and developing adaptive DBS strategies.

4.
Netw Neurosci ; 8(2): 466-485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952816

RESUMEN

Whole-brain functional connectivity networks (connectomes) have been characterized at different scales in humans using EEG and fMRI. Multimodal epileptic networks have also been investigated, but the relationship between EEG and fMRI defined networks on a whole-brain scale is unclear. A unified multimodal connectome description, mapping healthy and pathological networks would close this knowledge gap. Here, we characterize the spatial correlation between the EEG and fMRI connectomes in right and left temporal lobe epilepsy (rTLE/lTLE). From two centers, we acquired resting-state concurrent EEG-fMRI of 35 healthy controls and 34 TLE patients. EEG-fMRI data was projected into the Desikan brain atlas, and functional connectomes from both modalities were correlated. EEG and fMRI connectomes were moderately correlated. This correlation was increased in rTLE when compared to controls for EEG-delta/theta/alpha/beta. Conversely, multimodal correlation in lTLE was decreased in respect to controls for EEG-beta. While the alteration was global in rTLE, in lTLE it was locally linked to the default mode network. The increased multimodal correlation in rTLE and decreased correlation in lTLE suggests a modality-specific lateralized differential reorganization in TLE, which needs to be considered when comparing results from different modalities. Each modality provides distinct information, highlighting the benefit of multimodal assessment in epilepsy.


The relationship between resting-state hemodynamic (fMRI) and electrophysiological (EEG) connectivity has been investigated in healthy subjects, but this relationship is unknown in patients with left and right temporal lobe epilepsies (l/rTLE). Does the magnitude of the relationship differ between healthy subjects and patients? What role does the laterality of the epileptic focus play? What are the spatial contributions to this relationship? Here we use concurrent EEG-fMRI recordings of 65 subjects from two centers (35 controls, 34 TLE patients), to assess the correlation between EEG and fMRI connectivity. For all datasets, frequency-specific changes in cross-modal correlation were seen in lTLE and rTLE. EEG and fMRI connectivities do not measure perfectly overlapping brain networks and provide distinct information on brain networks altered in TLE, highlighting the benefit of multimodal assessment to inform about normal and pathological brain function.

6.
Epilepsy Behav ; 158: 109911, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924969

RESUMEN

Psychotic manifestations are a classic feature of non-convulsive status epilepticus (NCSE) of temporal origin. For several decades now, the various psychiatric manifestations of NCSE have been described, and in particular, the diagnostic challenges they pose. However, studies using stereotactic-EEG (SEEG) recordings are very rare. Only a few cases have been reported, but they demonstrated the anatomical substrate of certain manifestations, including hallucinations, delusions, and emotional changes. The post-ictal origin of some of the manifestations should be emphasized. More generally, SEEG has shown that seizures affecting the temporal and frontal limbic systems can lead to intense emotional experiences and behavioural disturbances.

7.
Ann Clin Transl Neurol ; 11(6): 1630-1635, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38730560

RESUMEN

The postictal state, an abnormal cerebral condition following a seizure until the return to the interictal baseline, is frequently overlooked, despite often exceeding ictal duration and significantly impacting patients' lives. This study analyzes stereo-EEG (SEEG) signal dynamics using permutation entropy to quantify recovery time (postictal alteration time - PAT) in focal epilepsy and its clinical correlations. The average PAT was 4.5 min, extending up to an hour and was highest in temporal epilepsy and hippocampal sclerosis. Correlating with age at seizure onset and at SEEG, PAT provides a solution for operationally defining the postictal state and guiding interventions.


Asunto(s)
Electroencefalografía , Convulsiones , Humanos , Adulto , Masculino , Femenino , Persona de Mediana Edad , Adulto Joven , Convulsiones/fisiopatología , Adolescente , Encéfalo/fisiopatología , Epilepsias Parciales/fisiopatología , Recuperación de la Función/fisiología , Niño , Factores de Tiempo
8.
Epilepsy Behav ; 156: 109806, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38677102

RESUMEN

SEEG-guided radiofrequency thermocoagulation (RF-TC) in the epileptogenic regions is a therapeutic option for patients with drug-resistant focal epilepsy who may have or not indication for epilepsy surgery. The most common adverse events of RF-TC are seizures, headaches, somatic pain, and sensory-motor deficits. If RF-TC could lead to psychiatric complications is unknown. In the present study, seven out of 164 patients (4.2 %) experienced psychiatric decompensation with or without memory deterioration after RF-TC of bilateral or unilateral amygdala and hippocampus. The appearance of symptoms was either acute, subacute, or chronic and the symptoms were either transient or lasted for several months. Common features among these patients were female sex, mesial temporal epilepsy, and a pre-existing history of psychological distress and memory dysfunction. Our study highlights the possibility of neuropsychiatric deterioration in specific patients following SEEG-guided RF-TC, despite its rarity.


Asunto(s)
Epilepsia Refractaria , Electrocoagulación , Humanos , Femenino , Masculino , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/psicología , Adulto , Persona de Mediana Edad , Adulto Joven , Electrocoagulación/efectos adversos , Electrocoagulación/métodos , Trastornos Mentales/etiología , Trastornos Mentales/psicología , Electroencefalografía , Adolescente , Electrocorticografía , Hipocampo , Epilepsias Parciales/cirugía , Epilepsias Parciales/psicología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/psicología , Estudios Retrospectivos , Amígdala del Cerebelo/cirugía
9.
Clin Neurophysiol ; 161: 198-210, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520800

RESUMEN

OBJECTIVE: The aim is to gain insight into the pathophysiological mechanisms underlying interictal epileptiform discharges observed in electroencephalographic (EEG) and stereo-EEG (SEEG, depth electrodes) recordings performed during pre-surgical evaluation of patients with drug-resistant epilepsy. METHODS: We developed novel neuro-inspired computational models of the human cerebral cortex at three different levels of description: i) microscale (detailed neuron models), ii) mesoscale (neuronal mass models) and iii) macroscale (whole brain models). Although conceptually different, micro- and mesoscale models share some similar features, such as the typology of neurons (pyramidal cells and three types of interneurons), their spatial arrangement in cortical layers, and their synaptic connectivity (excitatory and inhibitory). The whole brain model consists of a large-scale network of interconnected neuronal masses, with connectivity based on the human connectome. RESULTS: For these three levels of description, the fine-tuning of free parameters and the quantitative comparison with real data allowed us to reproduce interictal epileptiform discharges with a high degree of fidelity and to formulate hypotheses about the cell- and network-related mechanisms underlying the generation of fast ripples and SEEG-recorded epileptic spikes and spike-waves. CONCLUSIONS: The proposed models provide valuable insights into the pathophysiological mechanisms underlying the generation of epileptic events. The knowledge gained from these models effectively complements the clinical analysis of SEEG data collected during the evaluation of patients with epilepsy. SIGNIFICANCE: These models are likely to play a key role in the mechanistic interpretation of epileptiform activity.


Asunto(s)
Electroencefalografía , Epilepsia , Modelos Neurológicos , Humanos , Electroencefalografía/métodos , Epilepsia/fisiopatología , Epilepsia/diagnóstico , Corteza Cerebral/fisiopatología , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/diagnóstico
10.
Epilepsia ; 65(6): 1744-1755, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38491955

RESUMEN

OBJECTIVE: We have developed a novel method for estimating brain tissue electrical conductivity using low-intensity pulse stereoelectroencephalography (SEEG) stimulation coupled with biophysical modeling. We evaluated the hypothesis that brain conductivity is correlated with the degree of epileptogenicity in patients with drug-resistant focal epilepsy. METHODS: We used bipolar low-intensity biphasic pulse stimulation (.2 mA) followed by a postprocessing pipeline for estimating brain conductivity. This processing is based on biophysical modeling of the electrical potential induced in brain tissue between the stimulated contacts in response to pulse stimulation. We estimated the degree of epileptogenicity using a semi-automatic method quantifying the dynamic of fast discharge at seizure onset: the epileptogenicity index (EI). We also investigated how the location of stimulation within specific anatomical brain regions or within lesional tissue impacts brain conductivity. RESULTS: We performed 1034 stimulations of 511 bipolar channels in 16 patients. We found that brain conductivity was lower in the epileptogenic zone (EZ; unpaired median difference = .064, p < .001) and inversely correlated with the epileptogenic index value (p < .001, Spearman rho = -.32). Conductivity values were also influenced by anatomical site, location within lesion, and delay between SEEG electrode implantation and stimulation, and had significant interpatient variability. Mixed model multivariate analysis showed that conductivity is significantly associated with EI (F = 13.45, p < .001), anatomical regions (F = 5.586, p < .001), delay since implantation (F = 14.71, p = .003), and age at SEEG (F = 6.591, p = .027), but not with the type of lesion (F = .372, p = .773) or the delay since last seizure (F = 1.592, p = .235). SIGNIFICANCE: We provide a novel model-based method for estimating brain conductivity from SEEG low-intensity pulse stimulations. The brain tissue conductivity is lower in EZ as compared to non-EZ. Conductivity also varies significantly across anatomical brain regions. Involved pathophysiological processes may include changes in the extracellular space (especially volume or tortuosity) in epileptic tissue.


Asunto(s)
Encéfalo , Conductividad Eléctrica , Electroencefalografía , Epilepsias Parciales , Humanos , Epilepsias Parciales/fisiopatología , Electroencefalografía/métodos , Masculino , Femenino , Adulto , Encéfalo/fisiopatología , Adulto Joven , Epilepsia Refractaria/fisiopatología , Persona de Mediana Edad , Adolescente , Modelos Neurológicos , Técnicas Estereotáxicas , Estimulación Eléctrica/métodos
11.
Epilepsia ; 65(4): e47-e54, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38345420

RESUMEN

Nodular heterotopia (NH)-related drug-resistant epilepsy is challenging due to the deep location of the NH and the complexity of the underlying epileptogenic network. Using ictal stereo-electroencephalography (SEEG) and functional connectivity (FC) analyses in 14 patients with NH-related drug-resistant epilepsy, we aimed to determine the leading structure during seizures. For this purpose, we compared node IN and OUT strength between bipolar channels inside the heterotopia and inside gray matter, at the group level and at the individual level. At seizure onset, the channels within NH belonging to the epileptogenic and/or propagation network showed higher node OUT-strength than the channels within the gray matter (p = .03), with higher node OUT-strength than node IN-strength (p = .03). These results are in favor of a "leading" role of NH during seizure onset when involved in the epileptogenic- or propagation-zone network (50% of patients). However, when looking at the individual level, no significant difference between NH and gray matter was found, except for one patient (in two of three seizures). This result confirms the heterogeneity and the complexity of the epileptogenic network organization in NH and the need for SEEG exploration to characterize more precisely patient-specific epileptogenic network organization.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Heterotopia Nodular Periventricular , Humanos , Heterotopia Nodular Periventricular/complicaciones , Heterotopia Nodular Periventricular/diagnóstico por imagen , Epilepsia/diagnóstico por imagen , Convulsiones , Electroencefalografía/métodos , Corteza Cerebral , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía
12.
Epilepsia ; 65(5): 1346-1359, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38420750

RESUMEN

OBJECTIVE: This study was undertaken to develop a standardized grading system based on expert consensus for evaluating the level of confidence in the localization of the epileptogenic zone (EZ) as reported in published studies, to harmonize and facilitate systematic reviews in the field of epilepsy surgery. METHODS: We conducted a Delphi study involving 22 experts from 18 countries, who were asked to rate their level of confidence in the localization of the EZ for various theoretical clinical scenarios, using different scales. Information provided in these scenarios included one or several of the following data: magnetic resonance imaging (MRI) findings, invasive electroencephalography summary, and postoperative seizure outcome. RESULTS: The first explorative phase showed an overall interrater agreement of .347, pointing to large heterogeneity among experts' assessments, with only 17% of the 42 proposed scenarios associated with a substantial level of agreement. A majority showed preferences for the simpler scale and single-item scenarios. The successive Delphi voting phases resulted in a majority consensus across experts, with more than two thirds of respondents agreeing on the rating of each of the tested single-item scenarios. High or very high levels of confidence were ascribed to patients with either an Engel class I or class IA postoperative seizure outcome, a well-delineated EZ according to all available invasive EEG (iEEG) data, or a well-delineated focal epileptogenic lesion on MRI. MRI signs of hippocampal sclerosis or atrophy were associated with a moderate level of confidence, whereas a low level was ascribed to other MRI findings, a poorly delineated EZ according to iEEG data, or an Engel class II-IV postoperative seizure outcome. SIGNIFICANCE: The proposed grading system, based on an expert consensus, provides a simple framework to rate the level of confidence in the EZ reported in published studies in a structured and harmonized way, offering an opportunity to facilitate and increase the quality of systematic reviews and guidelines in the field of epilepsy surgery.


Asunto(s)
Consenso , Técnica Delphi , Electroencefalografía , Epilepsia , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/normas , Epilepsia/cirugía , Epilepsia/diagnóstico por imagen , Epilepsia/diagnóstico
13.
Epilepsy Curr ; 24(1): 10-15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327532

RESUMEN

This brief review summarizes presentations at the Temporal Lobe Club Special Interest Group session held in December 2022 at the American Epilepsy Society meeting. The session addressed newer methods to treat temporal epilepsy, including methods currently in clinical use and techniques under investigation. Brief summaries are provided for each of 4 lectures. Dr Chengyuan Wu discussed ablative techniques such as laser interstitial thermal ablation, radiofrequency ablation, focused ultrasound; Dr Joon Kang reviewed neuromodulation techniques including electrical stimulation and focused ultrasound; Dr Julia Makhalova discussed network effects of the aforementioned techniques; and Dr Derek Southwell reviewed inhibitory interneuron transplantation. These summaries are intended to provide a brief overview and references are provided for the reader to learn more about each topic.

14.
Sci Rep ; 14(1): 4071, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374380

RESUMEN

Stereoelectroencephalography is a powerful intracerebral EEG recording method for the presurgical evaluation of epilepsy. It consists in implanting depth electrodes in the patient's brain to record electrical activity and map the epileptogenic zone, which should be resected to render the patient seizure-free. Stereoelectroencephalography has high spatial accuracy and signal-to-noise ratio but remains limited in the coverage of the explored brain regions. Thus, the implantation might provide a suboptimal sampling of epileptogenic regions. We investigate the potential of improving a suboptimal stereoelectroencephalography recording by performing source localization on stereoelectroencephalography signals. We propose combining independent component analysis, connectivity measures to identify components of interest, and distributed source modelling. This approach was tested on two patients with two implantations each, the first failing to characterize the epileptogenic zone and the second giving a better diagnosis. We demonstrate that ictal and interictal source localization performed on the first stereoelectroencephalography recordings matches the findings of the second stereo-EEG exploration. Our findings suggest that independent component analysis followed by source localization on the topographies of interest is a promising method for retrieving the epileptogenic zone in case of suboptimal implantation.


Asunto(s)
Epilepsia , Humanos , Epilepsia/diagnóstico , Epilepsia/cirugía , Técnicas Estereotáxicas , Electroencefalografía/métodos , Encéfalo , Electrodos Implantados
15.
Epilepsia Open ; 9(2): 568-581, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38148028

RESUMEN

OBJECTIVE: Our objective was to evaluate the relationship between scalp-EEG and stereoelectroencephalography (SEEG) seizure-onset patterns (SOP) in patients with MRI-negative drug-resistant focal epilepsy. METHODS: We analyzed retrospectively 41 patients without visible lesion on brain MRI who underwent video-EEG followed by SEEG. We defined five types of SOPs on scalp-EEG and eight types on SEEG. We examined how various clinical variables affected scalp-EEG SOPs. RESULTS: The most prevalent scalp SOPs were rhythmic sinusoidal activity (56.8%), repetitive epileptiform discharges (22.7%), and paroxysmal fast activity (15.9%). The presence of paroxysmal fast activity on scalp-EEG was always seen without delay from clinical onset and correlated with the presence of low-voltage fast activity in SEEG (sensitivity = 22.6%, specificity = 100%). The main factor explaining the discrepancy between the scalp and SEEG SOPs was the delay between clinical and scalp-EEG onset. There was a correlation between the scalp and SEEG SOPs when the scalp onset was simultaneous with the clinical onset (p = 0.026). A significant delay between clinical and scalp discharge onset was observed in 25% of patients and featured always with a rhythmic sinusoidal activity on scalp, corresponding to similar morphology of the discharge on SEEG. The presence of repetitive epileptiform discharges on scalp was associated with an underlying focal cortical dysplasia (sensitivity = 30%, specificity = 90%). There was no significant association between the scalp SOP and the epileptogenic zone location (deep or superficial), or surgical outcome. SIGNIFICANCE: In patients with MRI-negative focal epilepsy, scalp SOP could suggest the SEEG SOP and some etiology (focal cortical dysplasia) but has no correlation with surgical prognosis. Scalp SOP correlates with the SEEG SOP in cases of simultaneous EEG and clinical onset; otherwise, scalp SOP reflects the propagation of the SEEG discharge. PLAIN LANGUAGE SUMMARY: We looked at the correspondence between the electrical activity recorded during the start of focal seizure using scalp and intracerebral electrodes in patients with no visible lesion on MRI. If there is a fast activity on scalp, it reflects similar activity inside the brain. We found a good correspondence between scalp and intracerebral electrical activity for cases without significant delay between clinical and scalp electrical onset (seen in 75% of the cases we studied). Visualizing repetitive epileptic activity on scalp could suggest a particular cause of the epilepsy: a subtype of brain malformation called focal cortical dysplasia.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Epilepsia , Displasia Cortical Focal , Humanos , Estudios Retrospectivos , Cuero Cabelludo/diagnóstico por imagen , Electroencefalografía , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/cirugía , Convulsiones , Epilepsia Refractaria/diagnóstico por imagen , Imagen por Resonancia Magnética , Electrodos Implantados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...