RESUMEN
Host factors play critical roles in SARS-CoV-2 infection-associated pathology and the severity of COVID-19. In this study, we systematically analyzed the roles of SARS-CoV-2-induced host factors, doublecortin-like kinase 1 (DCLK1), and S100A9 in viral pathogenesis. In autopsied subjects with COVID-19 and pre-existing chronic liver disease, we observed high levels of DCLK1 and S100A9 expression and immunosuppressive (DCLK1+S100A9+CD206+) M2-like macrophages and N2-like neutrophils in lungs and livers. DCLK1 and S100A9 expression were rarely observed in normal controls, COVID-19-negative subjects with chronic lung disease, or COVID-19 subjects without chronic liver disease. In hospitalized patients with COVID-19, we detected 2 to 3-fold increased levels of circulating DCLK1+S100A9+ mononuclear cells that correlated with disease severity. We validated the SARS-CoV-2-dependent generation of these double-positive immune cells in coculture. SARS-CoV-2-induced DCLK1 expression correlated with the activation of ß-catenin, a known regulator of the DCLK1 promoter. Gain and loss of function studies showed that DCLK1 kinase amplified live virus production and promoted cytokine, chemokine, and growth factor secretion by peripheral blood mononuclear cells. Inhibition of DCLK1 kinase blocked pro-inflammatory caspase-1/interleukin-1ß signaling in infected cells. Treatment of SARS-CoV-2-infected cells with inhibitors of DCLK1 kinase and S100A9 normalized cytokine/chemokine profiles and attenuated DCLK1 expression and ß-catenin activation. In conclusion, we report previously unidentified roles of DCLK1 in augmenting SARS-CoV-2 viremia, inflammatory cytokine expression, and dysregulation of immune cells involved in innate immunity. DCLK1 could be a potential therapeutic target for COVID-19, especially in patients with underlying comorbid diseases associated with DCLK1 expression. IMPORTANCE High mortality in COVID-19 is associated with underlying comorbidities such as chronic liver diseases. Successful treatment of severe/critical COVID-19 remains challenging. Herein, we report a targetable host factor, DCLK1, that amplifies SARS-CoV-2 production, cytokine secretion, and inflammatory pathways via activation of ß-catenin(p65)/DCLK1/S100A9/NF-κB signaling. Furthermore, we observed in the lung, liver, and blood an increased prevalence of immune cells coexpressing DCLK1 and S100A9, a myeloid-derived proinflammatory protein. These cells were associated with increased disease severity in COVID-19 patients. Finally, we used a novel small-molecule inhibitor of DCLK1 kinase (DCLK1-IN-1) and S100A9 inhibitor (tasquinimod) to decrease virus production in vitro and normalize hyperinflammatory responses known to contribute to disease severity in COVID-19.
Asunto(s)
COVID-19 , Quinasas Similares a Doblecortina , COVID-19/metabolismo , COVID-19/patología , Calgranulina B/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Quinasas Similares a Doblecortina/antagonistas & inhibidores , Quinasas Similares a Doblecortina/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Leucocitos Mononucleares/metabolismo , Quinolonas/farmacología , SARS-CoV-2 , beta Catenina/metabolismoRESUMEN
A subset of individuals who recover from coronavirus disease 2019 (COVID-19) develop post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal tissue samples. The mouse-adapted SARS-CoV-2 strain MA10 produces an acute respiratory distress syndrome in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute to clinical recovery phases. At 15 to 120 days after virus clearance, pulmonary histologic findings included subpleural lesions composed of collagen, proliferative fibroblasts, and chronic inflammation, including tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal up-regulation of profibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early antifibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.
Asunto(s)
COVID-19 , Animales , Antivirales , COVID-19/complicaciones , Fibrosis , Humanos , Pulmón/patología , Ratones , SARS-CoV-2RESUMEN
BACKGROUND: Many postmortem studies address the cardiovascular effects of COVID-19 and provide valuable information, but are limited by their small sample size. OBJECTIVES: The aim of this systematic review is to better understand the various aspects of the cardiovascular complications of COVID-19 by pooling data from a large number of autopsy studies. DATA SOURCES: We searched the online databases Ovid EBM Reviews, Ovid Embase, Ovid Medline, Scopus, and Web of Science for concepts of autopsy or histopathology combined with COVID-19, published between database inception and February 2021. We also searched for unpublished manuscripts using the medRxiv services operated by Cold Spring Harbor Laboratory. STUDY ELIGIBILITY CRITERIA: Articles were considered eligible for inclusion if they reported human postmortem cardiovascular findings among individuals with a confirmed SARS coronavirus type 2 (CoV-2) infection. PARTICIPANTS: Confirmed COVID-19 patients with post-mortem cardiovascular findings. INTERVENTIONS: None. METHODS: Studies were individually assessed for risk of selection, detection, and reporting biases. The median prevalence of different autopsy findings with associated interquartile ranges (IQRs). RESULTS: This review cohort contained 50 studies including 548 hearts. The median age of the deceased was 69 years. The most prevalent acute cardiovascular findings were myocardial necrosis (median: 100.0%; IQR, 20%-100%; number of studies = 9; number of patients = 64) and myocardial oedema (median: 55.5%; IQR, 19.5%-92.5%; number of studies = 4; number of patients = 46). The median reported prevalence of extensive, focal active, and multifocal myocarditis were all 0.0%. The most prevalent chronic changes were myocyte hypertrophy (median: 69.0%; IQR, 46.8%-92.1%) and fibrosis (median: 35.0%; IQR, 35.0%-90.5%). SARS-CoV-2 was detected in the myocardium with median prevalence of 60.8% (IQR 40.4-95.6%). CONCLUSIONS: Our systematic review confirmed the high prevalence of acute and chronic cardiac pathologies in COVID-19 and SARS-CoV-2 cardiac tropism, as well as the low prevalence of myocarditis in COVID-19.
Asunto(s)
COVID-19 , Miocarditis , Anciano , Autopsia , Humanos , Pulmón , Miocarditis/epidemiología , SARS-CoV-2RESUMEN
COVID-19 survivors develop post-acute sequelae of SARS-CoV-2 (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal samples. Mouse-adapted SARS-CoV-2 MA10 produces an acute respiratory distress syndrome (ARDS) in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute disease through clinical recovery. At 15-120 days post-virus clearance, histologic evaluation identified subpleural lesions containing collagen, proliferative fibroblasts, and chronic inflammation with tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal upregulation of pro-fibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early anti-fibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.
RESUMEN
Compared to the parental SARS-CoV-2 virus, infections by the now dominant Delta variant of SARS-CoV-2 appear to be more common and more severe in pregnant women. The need for a robust, cheap, and quick method for diagnosing placental infection by SARS-CoV-2 has thus become more acute. Here, we describe a highly sensitive and specific immunohistochemical assay for SARS-CoV-2 nucleocapsid protein for routine use in placental pathology practice.
Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , COVID-19/diagnóstico , Femenino , Humanos , Inmunohistoquímica , Placenta/patología , Embarazo , Complicaciones Infecciosas del Embarazo/diagnóstico , Complicaciones Infecciosas del Embarazo/patología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
A simple electrochemically mediated method for the conversion of alkyl carboxylic acids to their borylated congeners is presented. This protocol features an undivided cell setup with inexpensive carbon-based electrodes and exhibits a broad substrate scope and scalability in both flow and batch reactors. The use of this method in challenging contexts is exemplified with a modular formal synthesis of jawsamycin, a natural product harboring five cyclopropane rings.
Asunto(s)
Ácidos Borónicos/química , Ácidos Carboxílicos/química , Técnicas Electroquímicas/métodos , ElectrodosRESUMEN
Purpose: We used computerized image analysis and machine learning approaches to characterize spatial arrangement features of the immune response from digitized autopsied H&E tissue images of the lung in coronavirus disease 2019 (COVID-19) patients. Additionally, we applied our approach to tease out potential morphometric differences from autopsies of patients who succumbed to COVID-19 versus H1N1. Approach: H&E lung whole slide images from autopsy specimens of nine COVID-19 and two H1N1 patients were computationally interrogated. 606 image patches ( â¼ 55 per patient) of 1024 × 882 pixels were extracted from the 11 autopsied patient studies. A watershed-based segmentation approach in conjunction with a machine learning classifier was employed to identify two types of nuclei families: lymphocytes and non-lymphocytes (i.e., other nucleated cells such as pneumocytes, macrophages, and neutrophils). Based off the proximity of the individual nuclei, clusters for each nuclei family were constructed. For each of the resulting clusters, a series of quantitative measurements relating to architecture and density of nuclei clusters were calculated. A receiver operating characteristics-based feature selection method, violin plots, and the t-distributed stochastic neighbor embedding algorithm were employed to study differences in immune patterns. Results: In COVID-19, the immune response consistently showed multiple small-size lymphocyte clusters, suggesting that lymphocyte response is rather modest, possibly due to lymphocytopenia. In H1N1, we found larger lymphocyte clusters that were proximal to large clusters of non-lymphocytes, a possible reflection of increased prevalence of macrophages and other immune cells. Conclusion: Our study shows the potential of computational pathology to uncover immune response features that may not be obvious by routine histopathology visual inspection.
RESUMEN
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel coronavirus that is responsible for the 2019-2020 pandemic. In this comprehensive review, we discuss the current published literature surrounding the SARS-CoV-2 virus. We examine the fundamental concepts including the origin, virology, pathogenesis, clinical manifestations, diagnosis, laboratory, radiology, and histopathologic findings, complications, and treatment. Given that much of the information has been extrapolated from what we know about other coronaviruses including severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), we identify and provide insight into controversies and research gaps for the current pandemic to assist with future research ideas. Finally, we discuss the global response to the coronavirus disease-2019 (COVID-19) pandemic and provide thoughts regarding lessons for future pandemics.
Asunto(s)
COVID-19/diagnóstico , COVID-19/patología , Prueba de COVID-19 , Humanos , Pandemias , ARN Viral/aislamiento & purificación , SARS-CoV-2/patogenicidadRESUMEN
BACKGROUND: The world is currently witnessing a major devastating pandemic of Coronavirus disease-2019 (COVID-19). This disease is caused by a novel coronavirus named Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). It primarily affects the respiratory tract and particularly the lungs. The virus enters the cell by attaching its spike-like surface projections to the angiotensin-converting enzyme-2 (ACE-2) expressed in various tissues. Though the majority of symptomatic patients have mild flu-like symptoms, a significant minority develop severe lung injury with acute respiratory distress syndrome (ARDS), leading to considerable morbidity and mortality. Elderly patients with previous cardiovascular comorbidities are particularly susceptible to severe clinical manifestations. BODY: Currently, our limited knowledge of the pathologic findings is based on post-mortem biopsies, a few limited autopsies, and very few complete autopsies. From these reports, we know that the virus can be found in various organs but the most striking tissue damage involves the lungs resulting almost always in diffuse alveolar damage with interstitial edema, capillary congestion, and occasional interstitial lymphocytosis, causing hypoxia, multiorgan failure, and death. A few pathology studies have also reported intravascular microthrombi and pulmonary thrombembolism. Although the clinical presentation of this disease is fairly well characterized, knowledge of the pathologic aspects remains comparatively limited. CONCLUSION: In this review, we discuss clinical, pathologic, and genomic features of COVID-19, review current hypotheses regarding the pathogenesis, and briefly discuss the clinical characteristics. We also compare the salient features of COVID-19 with other coronavirus-related illnesses that have posed significant public health issues in the past, including SARS and the Middle East Respiratory Syndrome (MERS).
Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/patología , Neumonía Viral/patología , Neumonía Viral/virología , Enzima Convertidora de Angiotensina 2 , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Humanos , Inflamación/patología , Inflamación/virología , Pandemias , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2RESUMEN
Coronavirus Disease-19 (COVID-19), caused by the coronavirus SARS-CoV-2, was initially recognized in Wuhan, China and subsequently spread to all continents. The disease primarily affects the lower respiratory system, but may involve other organs and systems. Histopathologic evaluation of tissue from affected patients is crucial for diagnostic purposes, but also for advancing our understanding of the disease. For that reason, we developed immunohistochemical (IHC) and in situ hybridization (ISH) assays for detection of the. virus. A total of eight autopsy lungs, one placenta, and ten kidney biopsies from COVID-19 patients were stained with a panel of commercially available antibodies for IHC and commercially available RNA probes for ISH. Similarly, autopsy lungs, placentas and renal biopsies from non-COVID-19 patients were stained with the same antibodies and probes. All eight lungs and the placenta from COVID-19 patients stained positive by IHC and ISH, while the kidney biopsies stained negative by both methodologies. As expected, all specimens from non-COVID-19 patients were IHC and ISH negative. These two assays represent a sensitive and specific method for detecting the virus in tissue samples. We provide the protocols and the list of commercially available antibodies and probes for these assays, so they can be readily implemented in pathology laboratories and medical examiner offices for diagnostic and research purposes.
Asunto(s)
Betacoronavirus/aislamiento & purificación , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Femenino , Humanos , Indicadores y Reactivos , Riñón/virología , Pulmón/virología , Adhesión en Parafina , Placenta/virología , Embarazo , SARS-CoV-2RESUMEN
OBJECTIVES: To report the methods and findings of two complete autopsies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive individuals who died in Oklahoma (United States) in March 2020. METHODS: Complete postmortem examinations were performed according to standard procedures in a negative-pressure autopsy suite/isolation room using personal protective equipment, including N95 masks, eye protection, and gowns. The diagnosis of coronavirus disease 2019 (COVID-19) was confirmed by real-time reverse transcriptase polymerase chain reaction testing on postmortem swabs. RESULTS: A 77-year-old obese man with a history of hypertension, splenectomy, and 6 days of fever and chills died while being transported for medical care. He tested positive for SARS-CoV-2 on postmortem nasopharyngeal and lung parenchymal swabs. Autopsy revealed diffuse alveolar damage and chronic inflammation and edema in the bronchial mucosa. A 42-year-old obese man with a history of myotonic dystrophy developed abdominal pain followed by fever, shortness of breath, and cough. Postmortem nasopharyngeal swab was positive for SARS-CoV-2; lung parenchymal swabs were negative. Autopsy showed acute bronchopneumonia with evidence of aspiration. Neither autopsy revealed viral inclusions, mucus plugging in airways, eosinophils, or myocarditis. CONCLUSIONS: SARS-CoV-2 testing can be performed at autopsy. Autopsy findings such as diffuse alveolar damage and airway inflammation reflect true virus-related pathology; other findings represent superimposed or unrelated processes.
Asunto(s)
Autopsia , Infecciones por Coronavirus/patología , Pulmón/patología , Neumonía Viral/patología , Adulto , Anciano , Autopsia/instrumentación , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Técnicas de Laboratorio Clínico/normas , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/diagnóstico , Diagnóstico , Humanos , Hipertensión/complicaciones , Masculino , Distrofia Miotónica/complicaciones , Obesidad/complicaciones , Oklahoma , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/diagnóstico , SARS-CoV-2RESUMEN
The synthesis, physical properties, and calculated performances of six stereo- and regioisomeric cyclobutane nitric ester materials are described. While the calculated performances of these isomers, as expected, were similar, their physical properties were found to be extremely different. By alteration of the stereo- and regiochemistry, complete tunability in the form of low- or high-melting solids, stand-alone melt-castable explosives, melt-castable explosive eutectic compounds, and liquid propellant materials was obtained. This demonstrates that theoretical calculations should not be the main factor in driving the design of new materials and that stereo- and regiochemistry matter in the design of compounds of potential relevance to energetic formulators.
RESUMEN
The union of two powerful transformations, directed C-H activation and decarboxylative cross-coupling, for the enantioselective synthesis of vicinally functionalized alkyl, carbocyclic, and heterocyclic compounds is described. Starting from simple carboxylic acid building blocks, this modular sequence exploits the residual directing group to access more than 50 scaffolds that would be otherwise extremely difficult to prepare. The tactical use of these two transformations accomplishes a formal vicinal difunctionalization of carbon centers in a way that is modular and thus, amenable to rapid diversity incorporation. A simplification of routes to known preclinical drug candidates is presented along with the rapid diversification of an antimalarial compound series.
RESUMEN
Prized for their ability to rapidly generate chemical complexity by building new ring systems and stereocentres1, cycloaddition reactions have featured in numerous total syntheses2 and are a key component in the education of chemistry students3. Similarly, carbon-carbon (C-C) cross-coupling methods are integral to synthesis because of their programmability, modularity and reliability4. Within the area of drug discovery, an overreliance on cross-coupling has led to a disproportionate representation of flat architectures that are rich in carbon atoms with orbitals hybridized in an sp2 manner5. Despite the ability of cycloadditions to introduce multiple carbon sp3 centres in a single step, they are less used6. This is probably because of their lack of modularity, stemming from the idiosyncratic steric and electronic rules for each specific type of cycloaddition. Here we demonstrate a strategy for combining the optimal features of these two chemical transformations into one simple sequence, to enable the modular, enantioselective, scalable and programmable preparation of useful building blocks, natural products and lead scaffolds for drug discovery.
Asunto(s)
Carbono/química , Técnicas de Química Sintética , Reacción de Cicloadición , Productos Biológicos/síntesis química , Productos Biológicos/química , Descubrimiento de DrogasRESUMEN
The widespread use of alkyl boronic acids and esters is frequently hampered by the challenges associated with their preparation. We describe a simple and practical method to rapidly access densely functionalized alkyl boronate esters from abundant carboxylic substituents. This broad-scope nickel-catalyzed reaction uses the same activating principle as amide bond formation to replace a carboxylic acid moiety with a boronate ester. Application to peptides allowed expedient preparations of α-amino boronic acids, often with high stereoselectivity, thereby facilitating synthesis of the alkyl boronic acid drugs Velcade and Ninlaro as well as a boronic acid version of the iconic antibiotic vancomycin. The reaction also enabled the discovery and extensive biological characterization of potent human neutrophil elastase inhibitors, which offer reversible covalent binding properties.