Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 8(9)2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491901

RESUMEN

The use of non-optimal preparations of mesenchymal stem cells (MSCs), such as extensively expanded cells, might be necessary to obtain the large numbers of cells needed for many clinical applications. We previously demonstrated that minimally expanded (early passage) MSCs can be pre-activated as spheroids to produce potentially therapeutic factors in 3D cultures. Here, we used extensively expanded (late passage) MSCs and studied their 3D-culture activation potential. MSCs were culture-expanded as 2D monolayers, and cells from various passages were activated by 3D culture in hanging drops with either fetal bovine serum (FBS)-containing media or a more clinically-applicable animal product-free (xeno-free) media. Gene expression analyses demonstrated that MSC spheroids prepared from passage 3, 5, and 7 cells were similar to each other but different from 2D MSCs. Furthermore, the expression of notable anti-inflammatory/immune-modulatory factors cyclooxygenase-2 (PTGS2), TNF alpha induced protein 6 (TNFAIP6), and stanniocalcin 1 (STC-1) were up-regulated in all spheroid preparations. This was confirmed by the detection of secreted prostaglandin E2 (PGE-2), tumor necrosis factor-stimulated gene 6 (TSG-6, and STC-1. This study demonstrated that extensively expanded MSCs can be activated in 3D culture through spheroid formation in both FBS-containing and xeno-free media. This work highlights the possibility of activating otherwise less useable MSC preparations through 3D culture generating large numbers of potentially therapeutic MSCs.


Asunto(s)
Células Madre Mesenquimatosas/citología , Cultivo Primario de Células/métodos , Esferoides Celulares/citología , Adulto , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Proliferación Celular , Células Cultivadas , Medios de Cultivo/química , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Prostaglandinas/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/fisiología
2.
J Vis Exp ; (121)2017 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-28362380

RESUMEN

Mesenchymal stem/stromal cells (MSCs) hold great promise in bioengineering and regenerative medicine. MSCs can be isolated from multiple adult tissues via their strong adherence to tissue culture plastic and then further expanded in vitro, most commonly using fetal bovine serum (FBS). Since FBS can cause MSCs to become immunogenic, its presence in MSC cultures limits both clinical and experimental applications of the cells. Therefore, studies employing chemically defined xeno-free (XF) media for MSC cultures are extremely valuable. Many beneficial effects of MSCs have been attributed to their ability to regulate inflammation and immunity, mainly through secretion of immunomodulatory factors such as tumor necrosis factor-stimulated gene 6 (TSG6) and prostaglandin E2 (PGE2). However, MSCs require activation to produce these factors and since the effect of MSCs is often transient, great interest has emerged to discover ways of pre-activating the cells prior to their use, thus eliminating the lag time for activation in vivo. Here we present protocols to efficiently activate or prime MSCs in three-dimensional (3D) cultures under chemically defined XF conditions and to administer these pre-activated MSCs in vivo. Specifically, we first describe methods to generate spherical MSC micro-tissues or 'spheroids' in hanging drops using XF medium and demonstrate how the spheres and conditioned medium (CM) can be harvested for various applications. Second, we describe gene expression screens and in vitro functional assays to rapidly assess the level of MSC activation in spheroids, emphasizing the anti-inflammatory and anti-cancer potential of the cells. Third, we describe a novel method to inject intact MSC spheroids into the mouse peritoneal cavity for in vivo efficacy testing. Overall, the protocols herein overcome major challenges of obtaining pre-activated MSCs under chemically defined XF conditions and provide a flexible system to administer MSC spheroids for therapies.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Cavidad Peritoneal/citología , Esferoides Celulares/citología , Animales , Biomarcadores/metabolismo , Bovinos , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Esferoides Celulares/metabolismo
3.
Mol Cell Oncol ; 4(1): e1263715, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197538

RESUMEN

Relapse in cancer patients following an apparent cure and a prolonged latency period, known as tumor dormancy, remains an unrelenting clinical crisis. Here, I expand on our recent findings that potentially link cancer cell cannibalism of bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) to the senescence-associated secretory phenotype (SASP) and tumor dormancy.

4.
Spine J ; 17(3): 418-430, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27765715

RESUMEN

BACKGROUND CONTEXT: Spine pain and the disability associated with it are epidemic in the United States. According to the National Center for Health Statistics, more than 650,000 spinal fusion surgeries are performed annually in the United States, and yet there is a failure rate of 15%-40% when standard methods employing current commercial bone substitutes are used. Autologous bone graft is the gold standard in terms of fusion success, but the morbidity associated with the procedure and the limitations in the availability of sufficient material have limited its use in the majority of cases. A freely available and immunologically compatible bone mimetic with the properties of live tissue is likely to substantially improve the outcome of spine fusion procedures without the disadvantages of autologous bone graft. PURPOSE: This study aimed to compare a live human bone tissue analog with autologous bone grafting in an immunocompromised rat model of posterolateral fusion. DESIGN/SETTING: This is an in vitro and in vivo preclinical study of a novel human stem cell-derived construct for efficacy in posterolateral lumbar spine fusion. METHODS: Osteogenically enhanced human mesenchymal stem cells (OEhMSCs) were generated by exposure to conditions that activate the early stages of osteogenesis. Immunologic characteristics of OEhMSCs were evaluated in vitro. The secreted extracellular matrix from OEhMSCs was deposited on a clinical-grade gelatin sponge, resulting in bioconditioned gelatin sponge (BGS). Bioconditioned gelatin sponge was used alone, with live OEhMSCs (BGS+OEhMSCs), or with whole human bone marrow (BGS+hBM). Efficacy for spine fusion was determined by an institutionally approved animal model using 53 nude rats. RESULTS: Bioconditioned gelatin sponge with live OEhMSCs did not cause cytotoxicity when incubated with immunologically mismatched lymphocytes, and OEhMSCs inhibited lymphocyte expansion in mixed lymphocyte assays. Bioconditioned gelatin sponge with live OEhMSC and BGS+hBM constructs induced profound bone growth at fusion sites in vivo, with a comparable rate of fusion with syngeneic bone graft (negative [0 of 10], BGS alone [0 of 10], bone graft [7 of 10], BGS+OEhMSC [10 of 15], and BGS+hBM [8 of 8]). CONCLUSIONS: Collectively, these studies demonstrate that BGS+OEhMSC constructs possess low immunogenicity and drive vertebral fusion with efficiency matching syngeneic bone graft in rodents. We also demonstrate that BGS serves as a promising scaffold for spine fusion when combined with hBM.


Asunto(s)
Células Madre Adultas , Aloinjertos , Sustitutos de Huesos , Trasplante Óseo/métodos , Vértebras Lumbares/cirugía , Células Madre Mesenquimatosas , Fusión Vertebral/métodos , Adulto , Animales , Femenino , Gelatina , Humanos , Vértebras Lumbares/fisiología , Modelos Animales , Osteogénesis , Ratas Desnudas , Trasplante Autólogo , Trasplante Homólogo
5.
Calcif Tissue Int ; 100(3): 298-310, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27913821

RESUMEN

Theobromine (THB) is one of the major xanthine-like alkaloids found in cacao plant and a variety of other foodstuffs such as tea leaves, guarana and cola nuts. Historically, THB and its derivatives have been utilized to treat cardiac and circulatory disorders, drug-induced nephrotoxicity, proteinuria and as an immune-modulator. Our previous work demonstrated that THB has the capacity to improve the formation of hydroxyl-apatite during tooth development, suggesting that it may also enhance skeletal development. With its excellent safety profile and resistance to pharmacokinetic elimination, we reasoned that it might be an excellent natural osteoanabolic supplement during pregnancy, lactation and early postnatal growth. To determine whether THB had an effect on human osteoprogenitors, we subjected primary human bone marrow mesenchymal stem cells (hMSCs) to osteogenic assays after exposure to THB in vitro and observed that THB exposure increased the rate of osteogenesis and mineralization by hMSCs. Moreover, THB exposure resulted in a list of upregulated mRNA transcripts that best matched an osteogenic tissue expression signature as compared to other tissue expression signatures archived in several databases. To determine whether oral administration of THB resulted in improved skeletal growth, we provided pregnant rats with chow supplemented with THB during pregnancy and lactation. After weaning, offspring received THB continuously until postnatal day 50 (approximately 10 mg kg-1 day-1). Administration of THB resulted in neonates with larger bones, and 50-day-old offspring accumulated greater body mass, longer and thicker femora and superior tibial trabecular parameters. The accelerated growth did not adversely affect the strength and resilience of the bones. These results indicate that THB increases the osteogenic potential of bone marrow osteoprogenitors, and dietary supplementation of a safe dose of THB to expectant mothers and during the postnatal period could accelerate skeletal development in their offspring.


Asunto(s)
Desarrollo Óseo/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Teobromina/farmacología , Animales , Huesos/citología , Huesos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratas , Regulación hacia Arriba/efectos de los fármacos
6.
Proc Natl Acad Sci U S A ; 113(42): E6447-E6456, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27698134

RESUMEN

Patients with breast cancer often develop malignant regrowth of residual drug-resistant dormant tumor cells years after primary treatment, a process defined as cancer relapse. Deciphering the causal basis of tumor dormancy therefore has obvious therapeutic significance. Because cancer cell behavior is strongly influenced by stromal cells, particularly the mesenchymal stem/stromal cells (MSCs) that are actively recruited into tumor-associated stroma, we assessed the impact of MSCs on breast cancer cell (BCC) dormancy. Using 3D cocultures to mimic the cellular interactions of an emerging tumor niche, we observed that MSCs sequentially surrounded the BCCs, promoted formation of cancer spheroids, and then were internalized/degraded through a process resembling the well-documented yet ill-defined clinical phenomenon of cancer cell cannibalism. This suspected feeding behavior was less appreciable in the presence of a rho kinase inhibitor and in 2D monolayer cocultures. Notably, cannibalism of MSCs enhanced survival of BCCs deprived of nutrients but suppressed their tumorigenicity, together suggesting the cancer cells entered dormancy. Transcriptome profiles revealed that the resulting BCCs acquired a unique molecular signature enriched in prosurvival factors and tumor suppressors, as well as inflammatory mediators that demarcate the secretome of senescent cells, also referred to as the senescence-associated secretory phenotype. Overall, our results provide intriguing evidence that cancer cells under duress enter dormancy after cannibalizing MSCs. Importantly, our practical 3D coculture model could provide a valuable tool to understand the antitumor activity of MSCs and cell cannibalism further, and therefore open new therapeutic avenues for the prevention of cancer recurrence.


Asunto(s)
Citofagocitosis , Células Madre Mesenquimatosas/metabolismo , Neoplasias/metabolismo , Fase de Descanso del Ciclo Celular , Animales , Biomarcadores , Comunicación Celular , Línea Celular Tumoral , Supervivencia Celular , Citocinas , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Genes Reporteros , Xenoinjertos , Humanos , Ratones , Neoplasias/etiología , Neoplasias/patología , Fenotipo , Transducción de Señal , Esferoides Celulares , Estrés Fisiológico , Células Tumorales Cultivadas
7.
Transl Res ; 177: 127-142, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27469269

RESUMEN

Stanniocalcin-1 (STC-1) is a multifunctional glycoprotein with antioxidant and anti-inflammatory properties. Ischemic myocardial necrosis generates "danger" signals that perpetuate detrimental inflammatory reactions often involving monocyte recruitment and their subsequent differentiation into proinflammatory macrophages. Therefore, we evaluated the effects of recombinant STC-1 (rSTC-1) on monocyte phenotype and in a mouse model of myocardial infarction. Using an established protocol to differentiate human monocytes into macrophages, we demonstrated that rSTC-1 did not alter morphology of the differentiated cells, toll-like receptor (TLR) 4 expression, or expression of the myeloid cell marker CD11b. However, rSTC-1 treatment before differentiation attenuated the rise in the expression of CD14, a TLR4 coreceptor and pathogen sensor that propagates innate immune responses, and suppressed levels of inflammatory cytokines produced by the differentiated cells in response to the CD14-TLR4 ligand lipopolysaccharide. Moreover, rSTC-1 treatment reduced CD14 expression in monocytes stimulated with endogenous danger signals. Interestingly, the effects of rSTC-1 on CD14 expression were not reproduced by a superoxide dismutase mimetic. In mice with induced myocardial infarcts, intravenous administration of rSTC-1 decreased CD14 expression in the heart as well as levels of tumor necrosis factor alpha, C-X-C motif ligand 2, interleukin 1 beta, and myeloperoxidase. It also suppressed the formation of scar tissue while enhancing cardiac function. The data suggests that one of the beneficial effects of STC-1 might be attributed to suppression of CD14 on recruited monocytes and macrophages that limits their inflammatory response. STC-1 may be a promising therapy to protect the heart and other tissues from ischemic injury.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Glicoproteínas/farmacología , Glicoproteínas/uso terapéutico , Inflamación/patología , Macrófagos/patología , Monocitos/patología , Isquemia Miocárdica/tratamiento farmacológico , Animales , Biomarcadores/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cicatriz/patología , Citocinas/metabolismo , Pruebas de Función Cardíaca/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Inyecciones Intravenosas , Receptores de Lipopolisacáridos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos NOD , Ratones SCID , Modelos Biológicos , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Isquemia Miocárdica/diagnóstico por imagen , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Células U937
8.
Stem Cell Res Ther ; 7: 27, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26864573

RESUMEN

BACKGROUND: Mesenchymal stem/progenitor cells (MSC) have shown beneficial effects in many models of disease in part by modulating excessive inflammatory and immune responses. Frequently the beneficial effects of MSC persist long after their disappearance from host tissues, suggesting that MSC interact with intermediate cells in the host that relay or amplify their effects. The cells have usually been injected intravenously, but beneficial effects have also been reported with intraperitoneal (IP) injection of MSC. However the fate of IP injection of MSC has not been examined. METHODS: The fate of the human MSC injected IP into immune-competent mice was studied. In vivo imaging was used to track green fluorescent protein-labeled MSC in the peritoneal cavity. In addition, their retention in peritoneal tissues was measured by real-time polymerase chain reaction for human GAPDH mRNA. To describe the effects of human MSC on the immune system of the peritoneum, the peritoneal lavage, omentum, lymph nodes and mesenteric tissues were collected. Flow cytometry was used to evaluate the immune cell populations, while cytokine/chemokine production was measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Challenge with lipopolysaccharide at 3 days after the administration of MSC was used to evaluate the preconditioning of the immune system. RESULTS: Within 20 min, single MSC were no longer detected in peritoneal lavage fluid. Instead they were recovered as aggregates of varying size that contained mouse macrophages and a few B220+ lymphocytes. After 1 day, most of the aggregates containing live MSC were attached to sites throughout the peritoneal cavity including the omentum and mesentery. Less than 0.05 % of the live injected cells were detected in the spleen and jejunal lymph nodes. In all locations, MSC colocalized with mouse macrophages and B220+ lymphocytes. Attachment to the omentum and mesentery was accompanied by the recruitment of immune cells and changes in the production of a series of mouse cytokines. A similar increase in mouse cytokines in the peritoneum was seen after IP injections of human fibroblasts. CONCLUSIONS: IP injected human MSC rapidly formed aggregates with mouse macrophages and B220+ lymphocytes and attached to the walls of the peritoneal cavity. The formation of the aggregates probably limits access of the cells to the systemic circulation.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología , Animales , Adhesión Celular , Agregación Celular , Citocinas/biosíntesis , Citocinas/metabolismo , Humanos , Infusiones Parenterales , Antígenos Comunes de Leucocito/metabolismo , Lipopolisacáridos/farmacología , Linfocitos/inmunología , Linfocitos/metabolismo , Macrófagos Peritoneales/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Peritoneo/citología , Peritoneo/inmunología
9.
PLoS One ; 11(1): e0147553, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26793973

RESUMEN

TNF-α stimulated gene/protein 6 (TNFAIP6/TSG-6) is a multifunctional protein that has a number of potential therapeutic applications. Experiments and clinical trials with TSG-6, however, have been limited by the technical difficulties of producing the recombinant protein. We prepared stable clones of CHO cells that expressed recombinant human TSG-6 (rhTSG-6) as a secreted glycoprotein. Paradoxically, both cell number and protein production decreased dramatically when the clones were expanded. The decreases occurred because the protein aggregated the synthesizing CHO cells by binding to the brush border of hyaluronan that is found around many cultured cells. In addition, the rhTSG-6 readily self-aggregated. To address these problems, we added to the medium an inhibitor of hyaluronan synthesis and heparin to compete with the binding of TSG-6 to hyaluronan. Also, we optimized the composition of the culture medium, and transferred the CHO cells from a spinner culture system to a bioreactor that controlled pH and thereby decreased pH-dependent binding properties of the protein. With these and other improvements in the culture conditions, we obtained 57.0 mg ± 9.16 S.D. of rhTSG-6 in 5 or 6 liter of medium. The rhTSG-6 accounted for 18.0% ± 3.76 S.D. of the total protein in the medium. We then purified the protein with a Ni-chelate column that bound the His tag engineered into the C-terminus of the protein followed by an anion exchange column. The yield of the purified monomeric rhTSG-6 was 4.1 mg to 5.6 mg per liter of culture medium. After intravenous injection into mice, the protein had a longer plasma half-life than commercially available rhTSG-6 isolated from a mammalian cell lysate, apparently because it was recovered as a secreted glycoprotein. The bioactivity of the rhTSG-6 in suppressing inflammation was demonstrated in a murine model.


Asunto(s)
Células Madre Adultas/citología , Moléculas de Adhesión Celular/química , Inflamación/prevención & control , Proteínas Recombinantes/química , Células Madre Adultas/metabolismo , Animales , Moléculas de Adhesión Celular/administración & dosificación , Moléculas de Adhesión Celular/metabolismo , Cricetinae , Cricetulus , Semivida , Humanos , Ácido Hialurónico/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(1): 170-5, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26699510

RESUMEN

Extracellular vesicles (EVs) secreted by cells present an attractive strategy for developing new therapies, but progress in the field is limited by several issues: The quality of the EVs varies with the type and physiological status of the producer cells; protocols used to isolate the EVs are difficult to scale up; and assays for efficacy are difficult to develop. In the present report, we have addressed these issues by using human mesenchymal stem/stromal cells (MSCs) that produce EVs when incubated in a protein-free medium, preselecting the preparations of MSCs with a biomarker for their potency in modulating inflammation, incubating the cells in a chemically defined protein-free medium that provided a stable environment, isolating the EVs with a scalable chromatographic procedure, and developing an in vivo assay for efficacy of the cells in suppressing neuroinflammation after traumatic brain injury (TBI) in mice. In addition, we demonstrate that i.v. infusion of the isolated EVs shortly after induction of TBI rescued pattern separation and spatial learning impairments 1 mo later.


Asunto(s)
Lesiones Encefálicas/complicaciones , Trastornos del Conocimiento/terapia , Encefalitis/terapia , Vesículas Extracelulares/química , Células Madre Mesenquimatosas/química , Animales , Biomarcadores/análisis , Lesiones Encefálicas/psicología , Células Cultivadas , Cromatografía por Intercambio Iónico , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/psicología , Medio de Cultivo Libre de Suero , Encefalitis/etiología , Encefalitis/psicología , Humanos , Células Madre Mesenquimatosas/ultraestructura , Ratones , Aprendizaje Espacial , Tetraspanina 28/análisis , Tetraspanina 30/análisis
11.
Cytotherapy ; 16(11): 1486-1500, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25231893

RESUMEN

BACKGROUND AIMS: Human mesenchymal stromal cells (MSCs) are being used in clinical trials, but the best protocol to prepare the cells for administration to patients remains unclear. We previously demonstrated that MSCs could be pre-activated to express therapeutic factors by culturing the cells in 3 dimensions (3D). We compared the activation of MSCs in 3D in fetal bovine serum containing medium and in multiple xeno-free media formulations. METHODS: MSC aggregation and sphere formation was studied with the use of hanging drop cultures with medium containing fetal bovine serum or with various commercially available stem cell media with or without human serum albumin (HSA). Activation of MSCs was studied with the use of gene expression and protein secretion measurements and with functional studies with the use of macrophages and cancer cells. RESULTS: MSCs did not condense into tight spheroids and express a full complement of therapeutic genes in α-minimum essential medium or several commercial stem-cell media. However, we identified a chemically defined xeno-free media, which, when supplemented with HSA from blood or recombinant HSA, resulted in compact spheres with high cell viability, together with high expression of anti-inflammatory (prostaglandin E2, TSG-6 TNF-alpha induced gene/protein 6) and anti-cancer molecules (TRAIL TNF-related apoptosis-inducing ligand, interleukin-24). Furthermore, spheres cultured in this medium showed potent anti-inflammatory effects in a lipopolysaccharide-stimulated macrophage system and suppressed the growth of prostate cancer cells by promoting cell-cycle arrest and cell death. CONCLUSIONS: We demonstrated that cell activation in 3D depends critically on the culture medium. The conditions developed in the present study for 3D culture of MSCs should be useful in further research on MSCs and their potential therapeutic applications.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Medios de Cultivo/química , Técnicas In Vitro/métodos , Células Madre Mesenquimatosas/citología , Proliferación Celular/efectos de los fármacos , Dinoprostona/biosíntesis , Humanos , Albúmina Sérica/química , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos
12.
Curr Protoc Stem Cell Biol ; 28: 2B.6.1-2B.6.23, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24510769

RESUMEN

Herein, we describe a protocol for preparation of pre-activated anti-inflammatory human mesenchymal stem/precursor cells (MSCs) in 3-D culture without addition of exogenous chemicals or gene-transfer approaches. MSCs are an easily procurable source of multipotent adult stem cells with therapeutic potential largely attributed to their paracrine regulation of inflammation and immunity. However, the culture conditions to prepare the ideal MSCs for cell therapy remain elusive. Furthermore, the reported lag time for activation in experimental models has prompted investigations on pre-activating the cells prior to their administration. In this protocol, standard 2-D culture-expanded MSCs are activated by aggregation into 3-D spheres using hanging-drop cultures. MSC activation is evaluated by real-time PCR and/or ELISA for anti-inflammatory factors (TSG-6, STC-1, PGE2), and by a functional assay using lipopolysaccharide-stimulated macrophage cultures. Further, we elucidate methods to prepare MSC-sphere conditioned medium, intact spheres, and suspension of single cells from spheres for experimental and clinical applications.


Asunto(s)
Antiinflamatorios/metabolismo , Técnicas de Cultivo/métodos , Células Madre Mesenquimatosas/citología , Esferoides Celulares/citología , Animales , Biomarcadores/metabolismo , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Dinoprostona/metabolismo , Congelación , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo
13.
Bio Protoc ; 4(14)2014 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27478861

RESUMEN

Human mesenchymal stem/progenitor cells (MSCs) isolated from various adult tissues show remarkable therapeutic potential and are being employed in clinical trials for the treatment of numerous diseases (Prockop et al., 2010). While routes of cell administration vary, profound beneficial effects of MSCs in animal models have been observed following intraperitoneal injections of the cells (Roddy et al., 2011). Similar to MSC spheres formed in culture under conditions where attachment to plastic is not permitted (Bartosh et al., 2010), MSCs injected into the peritoneum of mice spontaneously aggregate into 3D sphere-like structures (Bartosh et al., 2013). During the process of sphere assembly and compaction, MSCs upregulate expression of numerous therapeutic anti-inflammatory and immune modulatory factors. Here we describe the method we previously used for the generation of human bone marrow-derived MSC aggregates/spheres in vivo (Bartosh et al., 2013). By tagging the MSCs with green fluorescent protein (GFP), the aggregates formed can be easily visualized, collected and analyzed for changes in cellular properties and interactions with host immune cells.

14.
Bio Protoc ; 4(14)2014 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27570796

RESUMEN

Macrophages represent a widely distributed and functionally diverse population of innate myeloid cells involved in inflammatory response to pathogens, tissue homeostasis and tissue repair (Murray and Wynn, 2011). Macrophages can be broadly grouped into two subpopulations with opposing activites: M1 or pro-inflammatory macrophages that promote T-helper type 1 (Th1) cell immunity and tissue damage, and M2 or anti-inflammatory/alternatively activated macrophages implicated in Th2 response and resolution of inflammation. Here we describe a rapid assay we used previously to monitor changes in pro-inflammatory and anti-inflammatory cytokine production by lipopolysaccharide (LPS)-activated macrophages in response to therapeutic paracrine factors produced by adult stem cells (Bartosh et al., 2010; Ylostalo et al., 2012; Bartosh et al., 2013). The assay can be adapted appropriately to test macrophage response to other agents as well that will be referred to herein as 'test reagents' or 'test compounds'. In this protocol, the mouse macrophage cell line J774A.1 is expanded as an adherent monolayer on petri dishes allowing for the cells to be harvested easily without enzymes or cell scrapers that can damage the cells. The macropahges are then stimulated in suspension with LPS and seeded into 12-well cell culture plates containing the test reagents. After 16-18 h, the medium conditioned by the macrophages is harvested and the cytokine profile in the medium determined with enzyme-linked immunosorbent assays (ELISA). We routinely measure levels of the pro-inflammtory cytokine TNF-alpha and the anti-inflammatory cytokine interleukin-10 (IL-10).

15.
Am J Physiol Lung Cell Mol Physiol ; 306(2): L120-31, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24242012

RESUMEN

Previous reports demonstrated that bleomycin-induced injury of lungs in mice can be improved by the administration of murine multipotent adult stem/progenitor cells (MSCs) from the bone marrow. Recently some of the beneficial effects of MSCs have been explained by the cells being activated by signals from injured tissues to express the inflammation modulating protein TNF-α-stimulated gene/protein 6 (TSG-6). In this study, we elected to test the hypothesis that targeting the early phase of bleomycin-induced lung injury with systemic TSG-6 administration may produce therapeutic effects such as preventing the deterioration of lung function and increasing survival by modulation of the inflammatory cascade. Lung injury in C57Bl/6J mice was induced by intratracheal administration of bleomycin. Mice then received intravenous injections of TSG-6 or sham controls. Pulse oximetry was used to monitor changes in lung function. Cell infiltration was evaluated by flow cytometry, cytokine expression was measured by ELISA assays, and lungs were assessed for histological attributes. The results demonstrated that intravenous infusion of TSG-6 during the early inflammatory phase decreased cellular infiltration into alveolar spaces. Most importantly, it improved both the subsequent decrease in arterial oxygen saturation levels and the survival of the mice. These findings demonstrated that the beneficial effects of TSG-6 in a model of bleomycin-induced lung injury are largely explained by the protein modulating the early inflammatory phase. Similar phase-directed strategy with TSG-6 or other therapeutic factors that MSCs produce may be useful for other lung diseases and diseases of other organs.


Asunto(s)
Moléculas de Adhesión Celular/farmacología , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/inmunología , Neumonía/tratamiento farmacológico , Neumonía/inmunología , Animales , Antibióticos Antineoplásicos/farmacología , Bleomicina/farmacología , Líquido del Lavado Bronquioalveolar/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Receptores de Hialuranos/genética , Inyecciones Intravenosas , Lesión Pulmonar/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oximetría , Neumonía/inducido químicamente , Proteínas Recombinantes/farmacología
16.
Stem Cells ; 31(11): 2443-56, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23922312

RESUMEN

Human mesenchymal stem/precursor cells (MSC) are similar to some other stem/progenitor cells in that they compact into spheres when cultured in hanging drops or on nonadherent surfaces. Assembly of MSC into spheres alters many of their properties, including enhanced secretion of factors that mediate inflammatory and immune responses. Here we demonstrated that MSC spontaneously aggregated into sphere-like structures after injection into a subcutaneous air pouch or the peritoneum of mice. The structures were similar to MSC spheres formed in cultures demonstrated by the increased expression of genes for inflammation-modulating factors TSG6, STC1, and COX2, a key enzyme in production of PGE2. To identify the signaling pathways involved, hanging drop cultures were used to follow the time-dependent changes in the cells as they compacted into spheres. Among the genes upregulated were genes for the stress-activated signaling pathway for IL1α/ß, and the contact-dependent signaling pathway for Notch. An inhibitor of caspases reduced the upregulation of IL1A/B expression, and inhibitors of IL1 signaling decreased production of PGE2, TSG6, and STC1. Also, inhibition of IL1A/B expression and secretion of PGE2 negated the anti-inflammatory effects of MSC spheres on stimulated macrophages. Experiments with γ-secretase inhibitors suggested that Notch signaling was also required for production of PGE2 but not TSG6 or STC1. The results indicated that assembly of MSC into spheres triggers caspase-dependent IL1 signaling and the secretion of modulators of inflammation and immunity. Similar aggregation in vivo may account for some of the effects observed with administration of the cells in animal models.


Asunto(s)
Caspasas/metabolismo , Dinoprostona/metabolismo , Glicoproteínas/metabolismo , Interleucina-1/metabolismo , Células Madre Mesenquimatosas/citología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-1/genética , Masculino , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Transfección
17.
Stem Cells ; 30(10): 2283-96, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22865689

RESUMEN

Culturing cells in three dimension (3D) provides an insight into their characteristics in vivo. We previously reported that human mesenchymal stem/stromal cells (hMSCs) cultured as 3D spheroids acquire enhanced anti-inflammatory properties. Here, we explored the effects of hMSC spheroids on macrophages that are critical cells in the regulation of inflammation. Conditioned medium (CM) from hMSC spheroids inhibited lipopolysaccharide-stimulated macrophages from secreting proinflammatory cytokines TNFα, CXCL2, IL6, IL12p40, and IL23. CM also increased the secretion of anti-inflammatory cytokines IL10 and IL1ra by the stimulated macrophages, and augmented expression of CD206, a marker of alternatively activated M2 macrophages. The principal anti-inflammatory activity in CM had a small molecular weight, and microarray data suggested that it was prostaglandin E2 (PGE2). This was confirmed by the observations that PGE2 levels were markedly elevated in hMSC spheroid-CM, and that the anti-inflammatory activity was abolished by an inhibitor of cyclooxygenase-2 (COX-2), a silencing RNA for COX-2, and an antibody to PGE2. The anti-inflammatory effects of the PGE2 on stimulated macrophages were mediated by the EP4 receptor. Spheroids formed by human adult dermal fibroblasts produced low levels of PGE2 and displayed negligible anti-inflammatory effects on stimulated macrophages, suggesting the features as unique to hMSCs. Moreover, production of PGE2 by hMSC spheroids was dependent on the activity of caspases and NFκB activation in the hMSCs. The results indicated that hMSCs in 3D-spheroid cultures are self-activated, in part by intracellular stress responses, to produce PGE2 that can change stimulated macrophages from a primarily proinflammatory M1 phenotype to a more anti-inflammatory M2 phenotype.


Asunto(s)
Citocinas/biosíntesis , Dinoprostona/farmacología , Macrófagos/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Anticuerpos/farmacología , Caspasas/genética , Caspasas/metabolismo , Técnicas de Cultivo de Célula , Medios de Cultivo Condicionados , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Dinoprostona/antagonistas & inhibidores , Dinoprostona/aislamiento & purificación , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Receptor de Manosa , Lectinas de Unión a Manosa/genética , Lectinas de Unión a Manosa/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , ARN Interferente Pequeño/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/genética , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal/efectos de los fármacos , Esferoides Celulares/citología , Esferoides Celulares/metabolismo
18.
Mol Ther ; 20(4): 788-97, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22294148

RESUMEN

Oxidative stress and photoreceptor apoptosis are prominent features of many forms of retinal degeneration (RD) for which there are currently no effective therapies. We previously observed that mesenchymal stem/stromal cells reduce apoptosis by being activated to secrete stanniocalcin-1 (STC-1), a multifunctional protein that reduces oxidative stress by upregulating mitochondrial uncoupling protein-2 (UCP-2). Therefore, we tested the hypothesis that intravitreal injection of STC-1 can rescue photoreceptors. We first tested STC-1 in the rhodopsin transgenic rat characterized by rapid photoreceptor loss. Intravitreal STC-1 decreased the loss of photoreceptor nuclei and transcripts and resulted in measurable retinal function when none is otherwise present in this rapid degeneration. We then tested STC-1 in the Royal College of Surgeons (RCS) rat characterized by a slower photoreceptor degeneration. Intravitreal STC-1 reduced the number of pyknotic nuclei in photoreceptors, delayed the loss of photoreceptor transcripts, and improved function of rod photoreceptors. Additionally, STC-1 upregulated UCP-2 and decreased levels of two protein adducts generated by reactive oxygen species (ROS). Microarrays from the two models demonstrated that STC-1 upregulated expression of a similar profile of genes for retinal development and function. The results suggested that intravitreal STC-1 is a promising therapy for various forms of RD including retinitis pigmentosa and atrophic age-related macular degeneration (AMD).


Asunto(s)
Glicoproteínas/farmacología , Degeneración Retiniana/tratamiento farmacológico , Animales , Electrorretinografía , Ensayo de Inmunoadsorción Enzimática , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Degeneración Macular/tratamiento farmacológico , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Degeneración Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/tratamiento farmacológico , Proteína Desacopladora 2
19.
Stem Cells ; 29(10): 1572-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21837654

RESUMEN

Previous reports demonstrated that the deleterious effects of chemical injury to the cornea were ameliorated by local or systemic administration of adult stem/progenitor cells from bone marrow referred to as mesenchymal stem or stromal cells (MSCs). However, the mechanisms for the beneficial effects of MSCs on the injured cornea were not clarified. Herein, we demonstrated that human MSCs (hMSCs) were effective in reducing corneal opacity and inflammation without engraftment after either intraperitoneal (i.p.) or intravenous (i.v.) administration following chemical injury to the rat cornea. A quantitative assay for human mRNA for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) demonstrated that less than 10 hMSCs were present in the corneas of rats 1-day and 3 days after i.v. or i.p. administration of 1 × 10(7) hMSCs. In vitro experiments using a transwell coculture system demonstrated that chemical injury to corneal epithelial cells activated hMSCs to secrete the multipotent anti-inflammatory protein TNF-α stimulated gene/protein 6 (TSG-6). In vivo, the effects of i.v. injection of hMSCs were largely abrogated by knockdown of TSG-6. Also, the effects of hMSCs were essentially duplicated by either i.v. or topical administration of TSG-6. Therefore, the results demonstrated that systemically administered hMSCs reduce inflammatory damage to the cornea without engraftment and primarily by secretion of the anti-inflammatory protein TSG-6 in response to injury signals from the cornea.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Córnea/inmunología , Opacidad de la Córnea/terapia , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Células Madre Mesenquimatosas/inmunología , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/inmunología , Técnicas de Cocultivo , Lesiones de la Cornea , Ensayo de Inmunoadsorción Enzimática , Epitelio Corneal/inmunología , Epitelio Corneal/lesiones , Técnicas de Silenciamiento del Gen , Humanos , Inyecciones Intraperitoneales , Inyecciones Intravenosas , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos BALB C , Modelos Animales , ARN Interferente Pequeño , Ratas , Ratas Endogámicas Lew , Transfección
20.
Proc Natl Acad Sci U S A ; 107(31): 13724-9, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20643923

RESUMEN

Previous reports suggested that culture as 3D aggregates or as spheroids can increase the therapeutic potential of the adult stem/progenitor cells referred to as mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs). Here we used a hanging drop protocol to prepare human MSCs (hMSCs) as spheroids that maximally expressed TNFalpha stimulated gene/protein 6 (TSG-6), the antiinflammatory protein that was expressed at high levels by hMSCs trapped in the lung after i.v. infusion and that largely explained the beneficial effects of hMSCs in mice with myocardial infarcts. The properties of spheroid hMSCs were found to depend critically on the culture conditions. Under optimal conditions for expression of TSG-6, the hMSCs also expressed high levels of stanniocalcin-1, a protein with both antiinflammatory and antiapoptotic properties. In addition, they expressed high levels of three anticancer proteins: IL-24, TNFalpha-related apoptosis inducing ligand, and CD82. The spheroid hMSCs were more effective than hMSCs from adherent monolayer cultures in suppressing inflammatory responses in a coculture system with LPS-activated macrophages and in a mouse model for peritonitis. In addition, the spheroid hMSCs were about one-fourth the volume of hMSCs from adherent cultures. Apparently as a result, larger numbers of the cells trafficked through the lung after i.v. infusion and were recovered in spleen, liver, kidney, and heart. The data suggest that spheroid hMSCs may be more effective than hMSCs from adherent cultures in therapies for diseases characterized by sterile tissue injury and unresolved inflammation and for some cancers that are sensitive to antiinflammatory agents.


Asunto(s)
Células Madre Mesenquimatosas/citología , Animales , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Agregación Celular , Supervivencia Celular , Células Cultivadas , Glicoproteínas/metabolismo , Humanos , Proteína Kangai-1/inmunología , Ligandos , Macrófagos/inmunología , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Neumonía/genética , Neumonía/inmunología , Neumonía/metabolismo , Neumonía/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...