Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012097

RESUMEN

Flooding events are highly detrimental to most terrestrial plant species. However, there is an impressive diversity of plant species that thrive in flood-prone regions and represent a treasure trove of unexplored flood-resilience mechanisms. Here we surveyed a panel of four species from the Cardamineae tribe representing a broad tolerance range. This included the flood-tolerant Cardamine pratensis, Rorippa sylvestris and Rorippa palustris and the flood-sensitive species Cardamine hirsuta. All four species displayed a quiescent strategy, evidenced by the repression of shoot growth underwater. Comparative transcriptomics analyses between the four species and the sensitive model species Arabidopsis thaliana were facilitated via de novo transcriptome assembly and identification of 16 902 universal orthogroups at a high resolution. Our results suggest that tolerance likely evolved separately in the Cardamine and Rorippa species. While the Rorippa response was marked by a strong downregulation of cell-cycle genes, Cardamine minimized overall transcriptional regulation. However, a weak starvation response was a universal trait of tolerant species, potentially achieved in multiple ways. It could result from a strong decline in cell-cycle activity, but is also intertwined with autophagy, senescence, day-time photosynthesis and night-time fermentation capacity. Our data set provides a rich source to study adaptational mechanisms of flooding tolerance.

2.
New Phytol ; 229(1): 140-155, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31792981

RESUMEN

The molecular mechanisms controlling underwater elongation are based extensively on studies on internode elongation in the monocot rice (Oryza sativa) and petiole elongation in Rumex rosette species. Here, we characterize underwater growth in the dicot Nasturtium officinale (watercress), a wild species of the Brassicaceae family, in which submergence enhances stem elongation and suppresses petiole growth. We used a genome-wide transcriptome analysis to identify the molecular mechanisms underlying the observed antithetical growth responses. Though submergence caused a substantial reconfiguration of the petiole and stem transcriptome, only little qualitative differences were observed between both tissues. A core submergence response included hormonal regulation and metabolic readjustment for energy conservation, whereas tissue-specific responses were associated with defense, photosynthesis, and cell wall polysaccharides. Transcriptomic and physiological characterization suggested that the established ethylene, abscisic acid (ABA), and GA growth regulatory module for underwater elongation could not fully explain underwater growth in watercress. Petiole growth suppression is likely attributed to a cell cycle arrest. Underwater stem elongation is driven by an early decline in ABA and is not primarily mediated by ethylene or GA. An enhanced stem elongation observed in the night period was not linked to hypoxia and suggests an involvement of circadian regulation.


Asunto(s)
Nasturtium , Oryza , Rumex , Ácido Abscísico , Giberelinas , Oryza/genética , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...