Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Sci Data ; 11(1): 369, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605066

RESUMEN

Theobroma cacao, the chocolate tree, is indigenous to the Amazon basin, the greatest biodiversity hotspot on earth. Recent advancement in plant genomics highlights the importance of de novo sequencing of multiple reference genomes to capture the genome diversity present in different cacao populations. In this study, three high-quality chromosome-level genomes of wild cacao were constructed, de novo assembled with HiFi long reads sequencing, and scaffolded using a reference-free strategy. These genomes represent the three most important genetic clusters of cacao trees from the Upper Amazon region. The three wild cacao genomes were compared with two reference genomes of domesticated cacao. The five cacao genetic clusters were inferred to have diverged in the early and middle Pleistocene period, approximately 1.83-0.69 million years ago. The results shown here serve as an example of understanding how the Amazonian biodiversity was developed. The three wild cacao genomes provide valuable resources for studying genetic diversity and advancing genetic improvement of this species.


Asunto(s)
Cacao , Genoma de Planta , Cacao/genética
3.
Sci Rep ; 14(1): 4175, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378988

RESUMEN

The oomycete Phytophthora palmivora infects the fruit of cacao trees (Theobroma cacao) causing black pod rot and reducing yields. Cacao genotypes vary in their resistance levels to P. palmivora, yet our understanding of how cacao fruit respond to the pathogen at the molecular level during disease establishment is limited. To address this issue, disease development and RNA-Seq studies were conducted on pods of seven cacao genotypes (ICS1, WFT, Gu133, Spa9, CCN51, Sca6 and Pound7) to better understand their reactions to the post-penetration stage of P. palmivora infection. The pod tissue-P. palmivora pathogen assay resulted in the genotypes being classified as susceptible (ICS1, WFT, Gu133 and Spa9) or resistant (CCN51, Sca6 and Pound7). The number of differentially expressed genes (DEGs) ranged from 1625 to 6957 depending on genotype. A custom gene correlation approach identified 34 correlation groups. De novo motif analysis was conducted on upstream promoter sequences of differentially expressed genes, identifying 76 novel motifs, 31 of which were over-represented in the upstream sequences of correlation groups and associated with gene ontology terms related to oxidative stress response, defense against fungal pathogens, general metabolism and cell function. Genes in one correlation group (Group 6) were strongly induced in all genotypes and enriched in genes annotated with defense-responsive terms. Expression pattern profiling revealed that genes in Group 6 were induced to higher levels in the resistant genotypes. An additional analysis allowed the identification of 17 candidate cis-regulatory modules likely to be involved in cacao defense against P. palmivora. This study is a comprehensive exploration of the cacao pod transcriptional response to P. palmivora spread after infection. We identified cacao genes, promoter motifs, and promoter motif combinations associated with post-penetration resistance to P. palmivora in cacao pods and provide this information as a resource to support future and ongoing efforts to breed P. palmivora-resistant cacao.


Asunto(s)
Cacao , Phytophthora , Cacao/microbiología , Phytophthora/genética , Fitomejoramiento , Perfilación de la Expresión Génica , Genotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
4.
J Mol Graph Model ; 125: 108582, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37595383

RESUMEN

The thermal stability of a protein is an important concern for its practical application in food processing industries. In this study, we have carried out classical molecular dynamics simulations to systematically investigate the effect of NADES (natural deep eutectic solvent) on the stabilization of the protein ß-Lactoglobulin (BLG) at different temperatures. This study sheds light on the very aspects of NADES composed of betaine and sorbitol on the stability of the protein. NADES provides better stability to the protein up to a temperature of 400 K than in water. It is observed that the protein starts to unfold above temperature 400 K in spite of the presence of NADES which is quiet evident from the root mean square deviation (RMSD) and radius of gyration (Rg) plots. The decreasing average solvent accessible surface area (SASA) values and increasing intra-protein hydrogen bonds indicate better stability of the protein in NADES medium than in water at temperatures 300 K and 400 K. At high temperatures viz. 450 K and 500 K the number and distribution of solvent species (betaine and sorbitol) around the protein surface show an increment that are evident from the calculations of solvation shell, radial and spatial distribution functions. Increased number of betaine molecules that interact with the protein through electrostatic interaction may lead to destabilization of the protein at these temperatures. This study suggests that NADES could be used as an ideal medium for thermal stability of the protein BLG up to a temperature of 400 K. Beyond this temperature, NADES used for this study fails to exert stabilization effect on the protein.


Asunto(s)
Betaína , Simulación de Dinámica Molecular , Temperatura , Lactoglobulinas/química , Solventes/química , Agua/química , Sorbitol
5.
G3 (Bethesda) ; 13(9)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37337677

RESUMEN

The basidiomycete Moniliophthora roreri causes frosty pod rot of cacao (Theobroma cacao) in the western hemisphere. Moniliophthora roreri is considered asexual and haploid throughout its hemibiotrophic life cycle. To understand the processes driving genome modification, using long-read sequencing technology, we sequenced and assembled 5 high-quality M. roreri genomes out of a collection of 99 isolates collected throughout the pathogen's range. We obtained chromosome-scale assemblies composed of 11 scaffolds. We used short-read technology to sequence the genomes of 22 similarly chosen isolates. Alignments among the 5 reference assemblies revealed inversions, translocations, and duplications between and within scaffolds. Isolates at the front of the pathogens' expanding range tend to share lineage-specific structural variants, as confirmed by short-read sequencing. We identified, for the first time, 3 new mating type A locus alleles (5 in total) and 1 new potential mating type B locus allele (3 in total). Currently, only 2 mating type combinations, A1B1 and A2B2, are known to exist outside of Colombia. A systematic survey of the M. roreri transcriptome across 2 isolates identified an expanded candidate effector pool and provided evidence that effector candidate genes unique to the Moniliophthoras are preferentially expressed during the biotrophic phase of disease. Notably, M. roreri isolates in Costa Rica carry a chromosome segment duplication that has doubled the associated gene complement and includes secreted proteins and candidate effectors. Clonal reproduction of the haploid M. roreri genome has allowed lineages with unique genome structures and compositions to dominate as it expands its range, displaying a significant founder effect.


Asunto(s)
Agaricales , Basidiomycota , Agaricales/genética , Basidiomycota/genética , Reproducción/genética , Colombia , Enfermedades de las Plantas/genética
6.
RSC Adv ; 12(35): 22650-22661, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36105966

RESUMEN

In view of the recent reports of the antidiabetic effect of the black rice bran extract, an attempt has been made in the present work to evaluate the potential α-glucosidase inhibitory activity of a few selected bioactive compounds present in the pericarp of the black rice. Out of the six bioactive compounds from black rice bran selected for the study, two compounds viz. cyanidin-3-glucoside and 6'-O-feruloylsucrose were identified as novel and highly potent α-glucosidase inhibitors via their in vitro and in silico screenings. The enzyme inhibition assay was corroborated by molecular docking and molecular dynamics simulation studies. Molecular docking studies suggested high binding energies and good binding interactions of these compounds with the active site residues of the receptor protein. A good agreement was found between the results of both modes of evaluation. The experimental results proved that the black rice bran extract can show 62% of alpha glucosidase inhibiting enzyme activity as compared to that of the popular drug Acarbose. While both the docking scores and binding affinity values indicate the formation of a ligand-enzyme complex by the major components of the extract, the molecular dynamics study further indicates the stability of the complex. The pharmacokinetic (ADMET properties) studies of these active compounds also support their use as safe oral anti-diabetic drugs. Thus, the results obtained from these studies of alpha glucosidase inhibition by bioactive compounds present in black rice bran indicate that these bioactive compounds can produce significant antidiabetic activity by inhibiting the active site of the target enzyme and hence these compounds can be used as leads for the synthesis of new antidiabetic drugs.

7.
ACS Omega ; 7(27): 23083-23095, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35847254

RESUMEN

In this work, we have explored the interaction of three different polyphenols with the food protein ß-lactoglobulin. Antioxidant activities of polyphenols are influenced by complexation with the protein. However, studies have shown that polyphenols after complexation with the protein can be more beneficial due to enhanced antioxidant activities. We have carried out molecular docking, molecular dynamics (MD) simulation, and quantum mechanics/molecular mechanics (QM/MM) studies on the three different protein-polyphenol complexes. We have found from molecular docking studies that apigenin binds in the internal cavity, luteolin binds at the mouth of the cavity, and eriodictyol binds outside the cavity of the protein. Docking studies have also provided binding free energy and inhibition constant values that showed that eriodictyol and apigenin exhibit better binding interactions with the protein than luteolin. For eriodictyol and luteolin, van der Waals, hydrophobic, and hydrogen bonding interactions are the main interacting forces, whereas for apigenin, hydrophobic and van der Waals interactions play major roles. We have calculated the root mean square deviation (RMSD), root mean square fluctuations (RMSF), solvent-accessible surface area (SASA), interaction energies, and hydrogen bonds of the protein-polyphenol complexes. Results show that the protein-eriodictyol complex is more stable than the other complexes. We have performed ONIOM calculations to study the antioxidant properties of the polyphenols. We have found that apigenin and luteolin act as better antioxidants than eriodictyol does on complexation with the protein, which is consistent with the results obtained from MD simulations.

8.
Sci Rep ; 12(1): 10041, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710864

RESUMEN

Planar hypercoordinate structures are gaining immense attention due to the shift from common paradigm. Herein, our high level ab initio calculations predict that planar pentacoordinate aluminium and gallium centres in Cu5Al2+ and Cu5Ga2+ clusters are global minima in their singlet ground states. These clusters are thermodynamically and kinetically very stable. Detailed electronic structure analyses reveal the presence of σ-aromaticity which is the driving force for the stability of the planar form.

9.
Inorg Chem ; 61(3): 1259-1263, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35007083

RESUMEN

Planar pentacoordinate zinc group elements, (M = Zn, Cd, Hg) were computationally found to be at a global minimum in Li5M+ clusters. The stability of these clusters is due to the presence of multicentric bonds. The central element (Zn, Cd, Hg) in each cluster features a negative oxidation state owing to the in-plane electron donation by the Li5+ framework. A similar global minimum planar pentacoordinate structure is found in Na5Zn+ and Na5Cd+ clusters.

10.
J Mol Graph Model ; 111: 108077, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34826718

RESUMEN

This article reports the interaction between a synthetic statin, fluvastatin with bovine milk protein, ß-lactoglobulin (BLG) through docking, constant pH molecular dynamics simulation (cpHMD) and binding free energy calculations. Docking provides the best fitted binding mode of the ligand with the receptor. We have carried out MD simulations of the protein and protein-ligand complex at two different pH viz. 7.0 and 1.5. We have found that the protein shows more compact behavior at pH 1.5 and this behavior is more prominent on complexation with the ligand. In support of this we have utilized the properties viz. root mean square deviations, root mean square fluctuations, radius of gyration, protein-ligand hydrogen bond and binding free energy calculations. Calculation of radius of gyration shows that the value decreases from 14.51 Å to 14.03 Å on complexation at pH 1.5. Calculations of hydrogen bonds at pH 1.5 confirms that hydrogen bonding interactions of the binding residues of the protein with the ligand provides stability to the complex. We have used molecular mechanics-generalized Born surface area (MMGBSA) method to estimate binding free energies of the protein with the ligand. MMGBSA calculations suggest that there is favorable binding interactions between the protein and the ligand with major contributions from Van der Waals interactions. We have found that the net average binding free energy is -29.394 kcal/mol that reveals a favorable binding interactions of BLG with the ligand. This study suggests that in spite of the acidic environment in the stomach BLG can act as a carrier for the acid-sensitive drug molecules such as fluvastatin because of its highly stable conformational behavior in the acidic pH.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Lactoglobulinas , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica
11.
Phys Chem Chem Phys ; 23(37): 20985-20988, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34519306

RESUMEN

Homopolar quadruple bonding in first row p-block elements is expected due to the presence of four valence orbitals accessible for bonding. Although quadruple bonding in C2 has been proposed, no such proposal exists for B2. Here we report the unprecedented B-B quadruple bonding in Li3B2- and Li4B2 clusters based on high level theoretical calculations. The quadruple bonding is omnipresent in the global minimum, its nearest energy isomer and the transition states connecting them. Various bonding analyses reveal the unprecedented nature of the BB quadruple bonding interaction.

12.
ACS Omega ; 6(12): 8656-8661, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33817527

RESUMEN

Unsupported donor-acceptor complexes of noble gases (Ng) with group 13 elements have been theoretically studied using density functional theory. Calculations reveal that heavier noble gases form thermodynamically stable compounds. The present study reveals that no rigid framework is necessary to stabilize the donor-acceptor complexes. Rather, prepyramidalization at the Lewis acid center may be an interesting alternative to stabilize these complexes. Detailed bonding analyses reveal the formation of two-center-two-electron dative bonding, where Ng atoms act as a donor.

13.
Phys Chem Chem Phys ; 23(16): 9660-9662, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33870373

RESUMEN

Quadruple bonding in heavier main group elements is not known albeit having four valence orbitals accessible for bonding. Here we report the unprecedented quadruple bonding between a silicon atom and a transition metal fragment in the 1A1 electronic ground state of C3v symmetric SiRu(CO)3 based on high level theoretical calculations. Various bonding analyses reveal the nature of the Si[quadruple bond, length as m-dash]Ru quadruple bonding interaction, which involves one usual Si-Ru σ bond, two usual Si-Ru π bonds and one additional Si → Ru dative σ bond.

14.
BMC Plant Biol ; 21(1): 38, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33430784

RESUMEN

BACKGROUND: Black gram [Vigna mungo (L)] seeds are a rich source of digestible protein and dietary fibre, both for human and animal consumption. However, the quality and quantity of the Vigna seeds are severely affected by bruchid beetles during storage. Therefore, analyses of the expression of the bruchid induced transcript dynamics in black gram pods would be helpful to understand the underlying defense mechanism against bruchid oviposition. RESULTS: We used the RNAseq approach to survey the changes in transcript profile in the developing seeds of a moderately resistant cultivar IC-8219 against bruchid oviposition using a susceptible cultivar T-9 as a control. A total of 96,084,600 and 99,532,488 clean reads were generated from eight (4 each) samples of IC-8219 and T-9 cultivar, respectively. Based on the BLASTX search against the NR database, 32,584 CDSs were generated of which 31,817 CDSs were significantly similar to Vigna radiata, a close relative of Vigna mungo. The IC-8219 cultivar had 630 significantly differentially expressed genes (DEGs) of which 304 and 326 genes up and down-regulated, respectively. However, in the T-9 cultivar, only 168 DEGs were identified of which 142 and 26 genes up and down-regulated, respectively. The expression analyses of 10 DEGs by qPCR confirmed the accuracy of the RNA-Seq data. Gene Ontology and KEGG pathway analyses helped us to better understand the role of these DEGs in oviposition mediated defense response of black gram. In both the cultivars, the most significant transcriptomic changes in response to the oviposition were related to the induction of defense response genes, transcription factors, secondary metabolites, enzyme inhibitors, and signal transduction pathways. It appears that the bruchid ovipositioning mediated defense response in black gram is induced by SA signaling pathways and defense genes such as defensin, genes for secondary metabolites, and enzyme inhibitors could be potential candidates for resistance to bruchids. CONCLUSION: We generated a transcript profile of immature black gram pods upon bruchid ovipositioning by de novo assembly and studied the underlying defense mechanism of a moderately resistant cultivar.


Asunto(s)
Escarabajos , Resistencia a la Enfermedad/genética , Interacciones Huésped-Parásitos , Oviposición , Enfermedades de las Plantas/genética , Vigna/genética , Vigna/parasitología , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Sitios de Carácter Cuantitativo
15.
Front Plant Sci ; 12: 780805, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35211126

RESUMEN

Black pod rot, caused by Phytophthora palmivora, is a devastating disease of Theobroma cacao L. (cacao) leading to huge losses for farmers and limiting chocolate industry supplies. To understand resistance responses of cacao leaves to P. palmivora, Stage 2 leaves of genotypes Imperial College Selection 1 (ICS1), Colección Castro Naranjal 51 (CCN51), and Pound7 were inoculated with zoospores and monitored for symptoms up to 48 h. Pound7 consistently showed less necrosis than ICS1 and CCN51 48 h after inoculation. RNA-Seq was carried out on samples 24 h post inoculation. A total of 24,672 expressed cacao genes were identified, and 2,521 transcripts showed induction in at least one P. palmivora-treated genotype compared to controls. There were 115 genes induced in the P. palmivora-treated samples in all three genotypes. Many of the differentially expressed genes were components of KEGG pathways important in plant defense signal perception (the plant MAPK signaling pathway, plant hormone signal transduction, and plant pathogen interactions), and plant defense metabolite biosynthesis (phenylpropanoid biosynthesis, α-linolenic acid metabolism, ethylene biosynthesis, and terpenoid backbone biosynthesis). A search of putative cacao resistance genes within the cacao transcriptome identified 89 genes with prominent leucine-rich repeat (LRR) domains, 170 protein kinases encoding genes, 210 genes with prominent NB-ARC domains, 305 lectin-related genes, and 97 cysteine-rich RK genes. We further analyzed the cacao leaf transcriptome in detail focusing on gene families-encoding proteins important in signal transduction (MAP kinases and transcription factors) and direct plant defense (Germin-like, ubiquitin-associated, lectin-related, pathogenesis-related, glutathione-S-transferases, and proteases). There was a massive reprogramming of defense gene processes in susceptible cacao leaf tissue after infection, which was restricted in the resistant genotype Pound7. Most genes induced in Pound7 were induced in ICS1/CCN51. The level of induction was not always proportional to the infection level, raising the possibility that genes are responding to infection more strongly in Pound7. There were also defense-associated genes constitutively differentially expressed at higher levels in specific genotypes, possibly providing a prepositioned defense. Many of the defense genes occur in blocks where members are constitutively expressed at different levels, and some members are induced by Ppal infection. With further study, the identified candidate genes and gene blocks may be useful as markers for breeding disease-resistant cacao genotypes against P. palmivora.

16.
Inorg Chem ; 59(24): 17880-17883, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33300785

RESUMEN

High-level quantum-chemical calculations have been used to predict a cationic ternary NBe5H4+ cluster containing a planar pentacoordinate nitrogen atom. The proposed cluster has pseudo dual aromaticity and is kinetically and thermodynamically very stable.

17.
Curr Genomics ; 21(7): 491-503, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33214765

RESUMEN

Plants inherently show resistance to pathogen attack but are susceptible to multiple bacteria, viruses, fungi, and phytoplasmas. Diseases as a result of such infection leads to the deterioration of crop yield. Several pathogen-sensitive gene activities, promoters of such genes, associated transcription factors, and promoter elements responsible for crosstalk between the defense signaling pathways are involved in plant resistance towards a pathogen. Still, only a handful of genes and their promoters related to plant resistance have been identified to date. Such pathogen-sensitive promoters are accountable for elevating the transcriptional activity of certain genes in response to infection. Also, a suitable promoter is a key to devising successful crop improvement strategies as it ensures the optimum expression of the required transgene. The study of the promoters also helps in mining more details about the transcription factors controlling their activities and helps to unveil the involvement of new genes in the pathogen response. Therefore, the only way out to formulate new solutions is by analyzing the molecular aspects of these promoters in detail. In this review, we provided an overview of the promoter motifs and cis-regulatory elements having specific roles in pathogen attack response. To elaborate on the importance and get a vivid picture of the pathogen-sensitive promoter sequences, the key motifs and promoter elements were analyzed with the help of PlantCare and interpreted with available literature. This review intends to provide useful information for reconstructing the gene networks underlying the resistance of plants against pathogens.

18.
Biophys Chem ; 267: 106479, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33027745

RESUMEN

In the present study we have tried to explore the effect of static external electric field of strength 3.0 V/nm on the conformational changes adopted by the protein ß-lactoglobulin. We have chosen different temperatures viz. 300 K, 400 K and 450 K to evaluate the temperature dependent effect of electric field. We have observed that combined effect of high temperature and static external electric field show significant changes on the structural conformation of the protein which in turn may affect the functional properties of the protein. Calculations of root mean square deviations reveal that both helical and ß-sheet regions of the protein are noticeably affected at high temperature. We have used solvent accessible surface area (SASA) and dipole moment values to explain that there is changes in hydrophobicity of the protein surface due to presence of external electric field. The study reveals that electric field in combination with high temperature can be used to alter the conformation of the protein and the effect of external electric field is more pronounced at high temperature than that of low temperature. The study provides a better understanding of the conformational changes adopted by the protein under the stress of external electric field and high temperature and provide guidance to choose optimum conditions for processing without loss of nutritional properties.


Asunto(s)
Lactoglobulinas/química , Temperatura , Electricidad , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Conformación Proteica , Solventes/química , Propiedades de Superficie
19.
Mol Biol Rep ; 46(6): 5713-5722, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31463640

RESUMEN

The differentially expressed genes in the chickpea pod wall have been identified for the first time using a forward suppression subtractive hybridization (SSH) library. In all, 226 clones of SSH library were sequenced and analyzed. A total of 179 high-quality expressed sequence tags (ESTs) were generated and based on the CAP3 assembly of these ESTs, 126 genes (97 singletons and 29 contigs) were computationally annotated. The mapping of 88.26% ESTs by gene ontology (GO) annotation distributed them into 751 GO terms of three categories, cellular location, molecular function, and biological process. The KEGG pathway analysis revealed 45 ESTs are involved in 49 different biological pathways. Also, 67 ESTs encodes four different classes of enzymes such as oxidoreductases (29), transferase (20), hydrolases (16) and isomerase (2). Six genes were selected and subjected to qPCR analysis, of these, two genes (FHG Floral homeotic AGAMOUS-like isoform X2, MADS1 MADS-box transcription factor) showed significant up-regulation in the pod wall compared to leaves. Surprisingly, one of the MADS1 box gene, FHG (CaAGLX2), responsible for flower development expressed in the pod wall. Therefore, understanding its specific role in the pod wall could be interesting. Thus, the transcript dynamics of the chickpea pod wall revealed differentially expressed genes in the pod wall, which may be participating in the metabolic build-up of both pod wall and seeds.


Asunto(s)
Cicer , Flores/genética , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Transcriptoma/genética , Cicer/genética , Cicer/crecimiento & desarrollo , Biología Computacional , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Dominio MADS/análisis , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Técnicas de Hibridación Sustractiva , Transcriptoma/fisiología
20.
PLoS One ; 12(4): e0176337, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28448540

RESUMEN

Black gram (Vigna mungo) seeds are a rich source of digestible proteins, however, during storage these seeds are severely damaged by bruchids (Callosobruchus spp.), reducing seed quality and yield losses. Most of the cultivated genotypes of black gram are susceptible to bruchids, however, few tolerant genotypes have also been identified but the mechanism of tolerance is poorly understood. We employed Suppression Subtractive Hybridization (SSH) to identify specifically, but rarely expressed bruchid egg induced genes in black gram. In this study, Suppression Subtractive Hybridization (SSH) library was constructed to study the genes involved in defense response in black gram against bruchid infestation. An EST library of 277 clones was obtained for further analyses. Based on CAP3 assembly, 134 unigenes were computationally annotated using Blast2GOPRO software. In all, 20 defense related genes were subject to quantitative PCR analysis (qPCR) out of which 12 genes showed up-regulation in developing seeds of the pods oviposited by bruchids. Few major defense genes like defensin, pathogenesis related protein (PR), lipoxygenase (LOX) showed high expression levels in the oviposited population when compared with the non-oviposited plants. This is the first report on defense related gene transcript dynamics during the bruchid-black gram interaction using SSH library. This library would be useful to clone defense related gene(s) such as defensin as represented in our library for crop improvement.


Asunto(s)
Escarabajos/fisiología , Óvulo/fisiología , Semillas/crecimiento & desarrollo , Semillas/genética , Vigna/crecimiento & desarrollo , Vigna/genética , Animales , Ontología de Genes , Anotación de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vigna/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...