Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 9595, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311798

RESUMEN

The proper development and function of telencephalic GABAergic interneurons is critical for maintaining the excitation and inhibition (E/I) balance in cortical circuits. Glutamate contributes to cortical interneuron (CIN) development via N-methyl-D-aspartate receptors (NMDARs). NMDAR activation requires the binding of a co-agonist, either glycine or D-serine. D-serine (co-agonist at many mature forebrain synapses) is racemized by the neuronal enzyme serine racemase (SR) from L-serine. We utilized constitutive SR knockout (SR-/-) mice to investigate the effect of D-serine availability on the development of CINs and inhibitory synapses in the prelimbic cortex (PrL). We found that most immature Lhx6 + CINs expressed SR and the obligatory NMDAR subunit NR1. At embryonic day 15, SR-/- mice had an accumulation of GABA and increased mitotic proliferation in the ganglionic eminence and fewer Gad1 + (glutamic acid decarboxylase 67 kDa; GAD67) cells in the E18 neocortex. Lhx6 + cells develop into parvalbumin (PV+) and somatostatin (Sst+) CINs. In the PrL of postnatal day (PND) 16 SR-/- mice, there was a significant decrease in GAD67+ and PV+, but not SST + CIN density, which was associated with reduced inhibitory postsynaptic potentials in layer 2/3 pyramidal neurons. These results demonstrate that D-serine availability is essential for prenatal CIN development and postnatal cortical circuit maturation.


Asunto(s)
Traumatismos Craneocerebrales , Neocórtex , Femenino , Embarazo , Animales , Ratones , Interneuronas , Corteza Prefrontal , Ácido Glutámico
2.
Mol Psychiatry ; 26(9): 4864-4883, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32661257

RESUMEN

Abnormalities of or reductions in GABAergic interneurons are implicated in the pathology of severe neuropsychiatric disorders, for which effective treatments are still elusive. Transplantation of human stem cell-derived interneurons is a promising cell-based therapy for treatment of these disorders. In mouse xenograft studies, human stem cell-derived-interneuron precursors could differentiate in vivo, but required a prolonged time of four to seven months to migrate from the graft site and integrate with the host tissue. This poses a serious roadblock for clinical translation of this approach. For transplantation to be effective, grafted neurons should migrate to affected areas at a faster rate. We have previously shown that endothelial cells of the periventricular vascular network are the natural substrates for GABAergic interneurons in the developing mouse forebrain, and provide valuable guidance cues for their long-distance migration. In addition, periventricular endothelial cells house a GABA signaling pathway with direct implications for psychiatric disease origin. In this study we translated this discovery into human, with significant therapeutic implications. We generated human periventricular endothelial cells, using human pluripotent stem cell technology, and extensively characterized its molecular, cellular, and functional properties. Co-culture of human periventricular endothelial cells with human interneurons significantly accelerated interneuron migration in vitro and led to faster migration and wider distribution of grafted interneurons in vivo, compared to neuron-only transplants. Furthermore, the co-transplantation strategy was able to rescue abnormal behavioral symptoms in a pre-clinical model of psychiatric disorder, within 1 month after transplantation. We anticipate this strategy to open new doors and facilitate exciting advances in angiogenesis-mediated treatment of psychiatric disorders.


Asunto(s)
Neuronas GABAérgicas , Trastornos Mentales , Animales , Movimiento Celular , Células Endoteliales , Humanos , Interneuronas , Trastornos Mentales/terapia , Ratones , Prosencéfalo
3.
Sci Adv ; 6(41)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33036972

RESUMEN

Intrinsic defects within blood vessels from the earliest developmental time points can directly contribute to psychiatric disease origin. Here, we show that nicotinamide adenine dinucleotide (NAD+), administered during a critical window of prenatal development, in a mouse model with dysfunctional endothelial γ-aminobutyric acid type A (GABAA) receptors (Gabrb3 endothelial cell knockout mice), results in a synergistic repair of impaired angiogenesis and normalization of brain development, thus preventing the acquisition of abnormal behavioral symptoms. The prenatal NAD+ treatment stimulated extensive cellular and molecular changes in endothelial cells and restored blood vessel formation, GABAergic neuronal development, and forebrain morphology by recruiting an alternate pathway for cellular repair, via previously unknown transcriptional mechanisms and purinergic receptor signaling. Our findings illustrate a novel and powerful role for NAD+ in sculpting prenatal brain development that has profound implications for rescuing brain blood flow in a permanent and irreversible manner, with long-lasting consequences for mental health outcome.


Asunto(s)
Células Endoteliales , NAD , Animales , Células Endoteliales/metabolismo , Femenino , Neuronas GABAérgicas/metabolismo , Ratones , Ratones Noqueados , NAD/metabolismo , Embarazo , Prosencéfalo/metabolismo , Receptores de GABA-A/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 40(9): 2244-2264, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32640900

RESUMEN

OBJECTIVE: Nanog is expressed in adult endothelial cells (ECs) at a low-level, however, its functional significance is not known. The goal of our study was to elucidate the role of Nanog in adult ECs using a genetically engineered mouse model system. Approach and Results: Biochemical analyses showed that Nanog is expressed in both adult human and mouse tissues. Primary ECs isolated from adult mice showed detectable levels of Nanog, Tert (telomerase reverse transcriptase), and eNos (endothelial nitric oxide synthase). Wnt3a (Wnt family member 3A) increased the expression of Nanog and hTERT (human telomerase reverse transcriptase) in ECs and increased telomerase activity in these cells. In a chromatin immunoprecipitation experiment, Nanog directly bound to the hTERT and eNOS promoter/enhancer DNA elements, thereby regulating their transcription. Administration of low-dose tamoxifen to ROSAmT/mG::Nanogfl/+::Cdh5CreERT2 mice induced deletion of a single Nanog allele, simultaneously labeling ECs with green fluorescent protein and resulting in decreased Tert and eNos levels. Histological and morphometric analyses of heart tissue sections prepared from these mice revealed cell death, microvascular rarefaction, and increased fibrosis in cardiac vessels. Accordingly, EC-specific Nanog-haploinsufficiency resulted in impaired EC homeostasis and angiogenesis. Conversely, re-expression of cDNA encoding the hTERT in Nanog-depleted ECs, in part, restored the effect of loss of Nanog. CONCLUSIONS: We showed that low-level Nanog expression is required for normal EC homeostasis and angiogenesis in adulthood.


Asunto(s)
Proliferación Celular , Senescencia Celular , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Proteína Homeótica Nanog/metabolismo , Animales , Apoptosis , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Femenino , Fibrosis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Homeótica Nanog/deficiencia , Proteína Homeótica Nanog/genética , Neovascularización Fisiológica , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Activación Transcripcional , Vía de Señalización Wnt , Proteína Wnt3A/farmacología
5.
Open Neurol J ; 13: 1-9, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984305

RESUMEN

The mammalian brain receives the lion's share of the body's blood supply and is a highly vascularized organ. The vascular and nervous systems arise at two distinct time points of embryogenesis; however, their functions tend to overlap or complement each other in the growth promoting milieu of the embryonic Central Nervous System (CNS). The pre-existing idea that mental disorders are a direct result from defects solely in neuronal populations and networks is gradually changing. Several studies have implicated blood vessel pathologies and blood flow changes in mental health disorders. Our own studies provide new perspectives as to how intrinsic defects in periventricular endothelial cells, from the earliest developmental time points can lead to the origin of mental health disorders such as schizophrenia, autism spectrum disorders (ASD), anxiety, and depression, thereby establishing direct links. In this article, we provide an overview of how the endothelial cell compartment in the brain is now gaining attention in the context of mental health disorders.

6.
Front Cell Dev Biol ; 7: 353, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998716

RESUMEN

Exosomes have been described as nanoscale membranous extracellular vesicles that emerge from a variety of cells and tissues and are enriched with biologically active genomic and non-genomic biomolecules capable of transducing cell to cell communication. Exosome release, and exosome mediated signaling and cross-talks have been reported in several pathophysiological states. Therefore, exosomes have the potential to become suitable for the diagnosis, prognosis and treatment of specific diseases, including endothelial cell (EC) dysfunction and regeneration. The role of EC-derived exosomes in the mechanisms of cardiovascular tissue regenerative processes represents currently an area of intense research activity. Recent studies have described the potential of exosomes to influence the pathophysiology of immune signaling, tumor metastasis, and angiogenesis. In this review, we briefly discuss progress made in our understanding of the composition and the roles of exosomes in relation to EC regeneration as well as revascularization of ischemic tissues.

7.
Front Physiol ; 10: 1583, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038280

RESUMEN

Our understanding of the etiological mechanisms leading up to epilepsy has undergone radical changes over time due to more insights into the complexity of the disease. The traditional hypothesis emphasized network hyperexcitability and an imbalance of inhibition and excitation, eventually leading to seizures. In this context, the contribution of the vascular system, and particularly the interactions between blood vessels and neuronal tissue, came into focus only recently. Thus, one highly exciting causative or contributing factor of epileptogenesis is the disruption of the blood-brain barrier (BBB) in the context of not only posttraumatic epilepsy, but also other etiologies. This hypothesis is now recognized as a synergistic mechanism that can give rise to epilepsy, and BBB repair for restoration of cerebrovascular integrity is considered a therapeutic alternative. Endothelial cells lining the inner surface of blood vessels are an integral component of the BBB system. Sealed by tight junctions, they are crucial in maintaining homeostatic activities of the brain, as well as acting as an interface in the neurovascular unit. Additional potential vascular mechanisms such as inflammation, altered neurovascular coupling, or changes in blood flow that can modulate neuronal circuit activity have been implicated in epilepsy. Our own work has shown how intrinsic defects within endothelial cells from the earliest developmental time points, which preclude neuronal changes, can lead to vascular abnormalities and autonomously support the development of hyperexcitability and epileptiform activity. In this article, we review the importance of vascular integrity and signaling for network excitability and epilepsy by highlighting complementary basic and clinical research studies and by outlining possible novel therapeutic strategies.

8.
J Biol Chem ; 292(50): 20785-20798, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29070680

RESUMEN

A key feature of acute myocardial infarction (AMI) is an alteration in cardiac architecture. Signaling events that result in the inhibition of glycogen synthase kinase-3 (GSK-3)ß represent an adaptive response that might limit the extent of adverse remodeling in the aftermath of AMI. Here, we report that an allosteric inhibitor of GSK-3ß, 4-benzyl-2-(naphthalene-1-yl)-1,2,4-thiadiazolidine-3,5-dione (NP12), lessens the magnitude of adverse myocardial remodeling and promotes angiogenesis. Male and female mice 8-10 weeks old were grouped (six animals in each group) into sham surgery (sham group), left anterior descending (LAD) ligation of the coronary artery followed by intramyocardial PBS injections (control group), and LAD ligation followed by NP12 administration (NP12 group). After 7 and 14 days, the extents of fibrosis and integrity of blood vessels were determined. Intramyocardial administration of NP12 increased phosphorylation of GSK-3ß, reduced fibrosis, and restored diastolic function in the mice that had experienced an AMI. Morphometric analyses revealed increased CD31+ and Ki67+ vascular structures and decreased apoptosis in these mice. NP12 administration mediated proliferation of reparative cells in the AMI hearts. In a time-course analysis, Wnt3a and NP12 stabilized ß-catenin and increased expression of both Nanog and VEGFR2. Moreover, NP12 increased the expression of ß-catenin and Nanog in myocardium from AMI mice. Finally, loss- and gain-of-function experiments indicated that the NP12-mediated benefit is, in part, Nanog-specific. These findings indicate that NP12 reduces fibrosis, reestablishes coronary blood flow, and improves ventricular function following an AMI. We conclude that NP12 might be useful for limiting ventricular remodeling after an AMI.


Asunto(s)
Inductores de la Angiogénesis/uso terapéutico , Remodelación Atrial/efectos de los fármacos , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Infarto del Miocardio/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Tiadiazoles/uso terapéutico , Regulación Alostérica/efectos de los fármacos , Inductores de la Angiogénesis/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Aorta/cirugía , Apoptosis/efectos de los fármacos , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/patología , Femenino , Glucógeno Sintasa Quinasa 3/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Técnicas In Vitro , Ligadura , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Neovascularización Fisiológica/efectos de los fármacos , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Tiadiazoles/farmacología
9.
Am J Physiol Cell Physiol ; 313(3): C340-C351, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28701359

RESUMEN

Oxidized modifications of LDL (oxLDL) play a key role in the development of endothelial dysfunction and atherosclerosis. However, the underlying mechanisms of oxLDL-mediated cellular behavior are not completely understood. Here, we compared the effects of two major types of oxLDL, copper-oxidized LDL (Cu2+-oxLDL) and lipoxygenase-oxidized LDL (LPO-oxLDL), on proliferation of human aortic endothelial cells (HAECs). Cu2+-oxLDL enhanced HAECs' proliferation in a dose- and degree of oxidation-dependent manner. Similarly, LPO-oxLDL also enhanced HAEC proliferation. Mechanistically, both Cu2+-oxLDL and LPO-oxLDL enhance HAEC proliferation via activation of Rho, Akt phosphorylation, and a decrease in the expression of cyclin-dependent kinase inhibitor 1B (p27kip1). Both Cu2+-oxLDL or LPO-oxLDL significantly increased Akt phosphorylation, whereas an Akt inhibitor, MK2206, blocked oxLDL-induced increase in HAEC proliferation. Blocking Rho with C3 or its downstream target ROCK with Y27632 significantly inhibited oxLDL-induced Akt phosphorylation and proliferation mediated by both Cu2+- and LPO-oxLDL. Activation of RhoA was blocked by Rho-GDI-1, which also abrogated oxLDL-induced Akt phosphorylation and HAEC proliferation. In contrast, blocking Rac1 in these cells had no effect on oxLDL-induced Akt phosphorylation or cell proliferation. Moreover, oxLDL-induced Rho/Akt signaling downregulated cell cycle inhibitor p27kip1 Preloading these cells with cholesterol, however, prevented oxLDL-induced Akt phosphorylation and HAEC proliferation. These findings provide a new understanding of the effects of oxLDL on endothelial proliferation, which is essential for developing new treatments against neovascularization and progression of atherosclerosis.


Asunto(s)
Colesterol/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Endoteliales/fisiología , Lipoproteínas LDL/metabolismo , Proteína Oncogénica v-akt/metabolismo , Quinasas Asociadas a rho/metabolismo , Proliferación Celular/fisiología , Células Cultivadas , Células Endoteliales/citología , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Transducción de Señal/fisiología
10.
PLoS One ; 12(5): e0176496, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28467484

RESUMEN

RATIONALE: The human epigenome is plastic. The goal of this study was to address if fibroblast cells can be epigenetically modified to promote neovessel formation. METHODS AND RESULTS: Here, we used highly abundant human adult dermal fibroblast cells (hADFCs) that were treated with the chromatin-modifying agents 5-aza-2'-deoxycytidine and trichostatin A, and subsequently subjected to differentiation by activating Wnt signaling. Our results show that these epigenetically modified hADFCs increasingly expressed ß-catenin, pluripotency factor octamer-binding transcription factor-4 (OCT4, also known as POU5F1), and endothelial cell (EC) marker called vascular endothelial growth factor receptor-2 (VEGFR-2, also known as Fetal Liver Kinase-1). In microscopic analysis, ß-catenin localized to cell-cell contact points, while OCT4 was found to be localized primarily to the nucleus of these cells. Furthermore, in a chromatin immunoprecipitation experiment, OCT4 bound to the VEGFR-2/FLK1 promoter. Finally, these modified hADFCs also transduced Wnt signaling. Importantly, on a two-dimensional (2D) gel substrate, a subset of the converted cells formed vascular network-like structures in the presence of VEGF. CONCLUSION: Chromatin-modifying agents converted hADFCs to OCT4+ and VEGFR-2+ capillary tube-forming cells in a 2D matrix in VEGF-dependent manner.


Asunto(s)
Capilares/citología , Cromatina/metabolismo , Fibroblastos/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Células Cultivadas , Inmunoprecipitación de Cromatina , Humanos
11.
Cardiovasc Res ; 111(1): 105-18, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27125875

RESUMEN

AIMS: Lipid phosphate phosphatase-3 (LPP3) is expressed at high levels in endothelial cells (ECs). Although LPP3 is known to hydrolyse the phosphate group from lysolipids such as spingosine-1-phosphate and its structural homologues, the function of Lpp3 in ECs is not completely understood. In this study, we investigated how tyrosine-protein kinase receptor (TEK or Tie2) promoter-dependent deletion of Lpp3 alters EC activities. METHODS AND RESULTS: Lpp3(fl/fl) mice were crossed with the tg.Tie2(Cre) transgenic line. Vasculogenesis occurred normally in embryos with Tie2(Cre)-mediated deletion of Lpp3 (called Lpp3(ECKO)), but embryonic lethality occurred in two waves, the first wave between E8.5 and E10.5, while the second between E11.5 and E13.5. Lethality in Lpp3(ECKO) embryos after E11.5 was accompanied by vascular leakage and haemorrhage, which likely resulted in insufficient cardiovascular development. Analyses of haematoxylin- and eosin-stained heart sections from E11.5 Lpp3(ECKO) embryos showed insufficient heart growth associated with decreased trabeculation, reduced growth of the compact wall, and absence of cardiac cushions. Staining followed by microscopic analyses of Lpp3(ECKO) embryos revealed the presence of apoptotic ECs. Furthermore, Lpp3-deficient ECs showed decreased gene expression and protein levels of Cyclin-D1, VE-cadherin, Fibronectin, Klf2, and Klf4. To determine the underlying mechanisms of vascular leakage and barrier disruption, we performed knockdown and rescue experiments in cultured ECs. LPP3 knockdown decreased transendothelial electrical resistance and increased permeability. Re-expression of ß-catenin cDNA in LPP3-knockdown ECs partially restored the effect of the LPP3 loss, whereas re-expression of p120ctn cDNA did not. CONCLUSION: These findings demonstrate the essential roles of LPP3 in the maturation of EC barrier integrity and normal cardiovascular development.


Asunto(s)
Vasos Sanguíneos/enzimología , Permeabilidad Capilar , Células Endoteliales/enzimología , Neovascularización Fisiológica , Fosfatidato Fosfatasa/deficiencia , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Apoptosis , Vasos Sanguíneos/embriología , Vasos Sanguíneos/patología , Cadherinas/genética , Cadherinas/metabolismo , Cateninas/genética , Cateninas/metabolismo , Células Cultivadas , Impedancia Eléctrica , Células Endoteliales/patología , Fibronectinas/genética , Fibronectinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genotipo , Edad Gestacional , Corazón/embriología , Factor 4 Similar a Kruppel , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Fosfatidato Fosfatasa/genética , Interferencia de ARN , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Transfección , beta Catenina/genética , beta Catenina/metabolismo , Catenina delta
12.
J Lipid Res ; 57(5): 791-808, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26989083

RESUMEN

Endothelial biomechanics is emerging as a key factor in endothelial function. Here, we address the mechanisms of endothelial stiffening induced by oxidized LDL (oxLDL) and investigate the role of oxLDL in lumen formation. We show that oxLDL-induced endothelial stiffening is mediated by CD36-dependent activation of RhoA and its downstream target, Rho kinase (ROCK), via inhibition of myosin light-chain phosphatase (MLCP) and myosin light-chain (MLC)2 phosphorylation. The LC-MS/MS analysis identifies 7-ketocholesterol (7KC) as the major oxysterol in oxLDL. Similarly to oxLDL, 7KC induces RhoA activation, MLCP inhibition, and MLC2 phosphorylation resulting in endothelial stiffening. OxLDL also facilitates formation of endothelial branching networks in 3D collagen gels in vitro and induces increased formation of functional blood vessels in a Matrigel plug assay in vivo. Both effects are RhoA and ROCK dependent. An increase in lumen formation was also observed in response to pre-exposing the cells to 7KC, an oxysterol that induces endothelial stiffening, but not to 5α,6α epoxide that does not affect endothelial stiffness. Importantly, loading cells with cholesterol prevented oxLDL-induced RhoA activation and the downstream signaling cascade, and reversed oxLDL-induced lumen formation. In summary, we show that oxLDL-induced endothelial stiffening is mediated by the CD36/RhoA/ROCK/MLCP/MLC2 pathway and is associated with increased endothelial angiogenic activity.


Asunto(s)
Células Endoteliales/patología , Lipoproteínas LDL/fisiología , Neovascularización Patológica/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Miosinas Cardíacas/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Humanos , Ratones Desnudos , Ratones SCID , Cadenas Ligeras de Miosina/metabolismo , Transducción de Señal , Rigidez Vascular , Quinasas Asociadas a rho/metabolismo
13.
Stem Cells ; 32(6): 1538-52, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24496925

RESUMEN

Endothelial cell (EC) dedifferentiation in relation to neovascularization is a poorly understood process. In this report, we addressed the role of Wnt signaling in the mechanisms of neovascularization in adult tissues. Here, we show that a low-dose of 6-bromoindirubin-3'-oxime (BIO), a competitive inhibitor of glycogen synthase kinase-3ß, induced the stabilization of ß-catenin and its subsequent direct interaction with the transcription factor NANOG in the nucleus of ECs. This event induced loss of VE-cadherin from the adherens junctions, increased EC proliferation accompanied by asymmetric cell division (ACD), and formed cellular aggregates in hanging drop assays indicating the acquisition of a dedifferentiated state. In a chromatin immunoprecipitation assay, nuclear NANOG protein bound to the NANOG- and VEGFR2-promoters in ECs, and the addition of BIO activated the NANOG-promoter-luciferase reporter system in a cell-based assay. Consequently, NANOG-knockdown decreased BIO-induced NOTCH-1 expression, thereby decreasing cell proliferation, ACD, and neovascularization. In a Matrigel plug assay, BIO induced increased neovascularization, secondary to the presence of vascular endothelial growth factor (VEGF). Moreover, in a mouse model of hind limb ischemia, BIO augmented neovascularization that was coupled with increased expression of NOTCH-1 in ECs and increased smooth muscle α-actin(+) cell recruitment around the neovessels. Thus, these results demonstrate the ability of a low-dose of BIO to augment neovascularization secondary to VEGF, a process that was accompanied by a partial dedifferentiation of ECs via ß-catenin and the NANOG signaling pathway.


Asunto(s)
Desdiferenciación Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Indoles/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Oximas/farmacología , Inductores de la Angiogénesis/metabolismo , Animales , Agregación Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Proteínas Fetales/genética , Miembro Posterior/irrigación sanguínea , Miembro Posterior/patología , Proteínas de Homeodominio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Indoles/administración & dosificación , Isquemia/patología , Ratones , Proteína Homeótica Nanog , Oximas/administración & dosificación , Fenotipo , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteínas de Dominio T Box/genética , Factor A de Crecimiento Endotelial Vascular/farmacología , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...