Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Circ Heart Fail ; 15(4): e008686, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35000421

RESUMEN

BACKGROUND: MicroRNA-150 (miR-150) plays a protective role in heart failure (HF). Long noncoding RNA, myocardial infarction-associated transcript (MIAT) regulates miR-150 function in vitro by direct interaction. Concurrent with miR-150 downregulation, MIAT is upregulated in failing hearts, and gain-of-function single-nucleotide polymorphisms in MIAT are associated with increased risk of myocardial infarction (MI) in humans. Despite the correlative relationship between MIAT and miR-150 in HF, their in vivo functional relationship has never been established, and molecular mechanisms by which these 2 noncoding RNAs regulate cardiac protection remain elusive. METHODS: We use MIAT KO (knockout), Hoxa4 (homeobox a4) KO, MIAT TG (transgenic), and miR-150 TG mice. We also develop DTG (double TG) mice overexpressing MIAT and miR-150. We then use a mouse model of MI followed by cardiac functional, structural, and mechanistic studies by echocardiography, immunohistochemistry, transcriptome profiling, Western blotting, and quantitative real-time reverse transcription-polymerase chain reaction. Moreover, we perform expression analyses in hearts from patients with HF. Lastly, we investigate cardiac fibroblast activation using primary adult human cardiac fibroblasts and in vitro assays to define the conserved MIAT/miR-150/HOXA4 axis. RESULTS: Using novel mouse models, we demonstrate that genetic overexpression of MIAT worsens cardiac remodeling, while genetic deletion of MIAT protects hearts against MI. Importantly, miR-150 overexpression attenuates the detrimental post-MI effects caused by MIAT. Genome-wide transcriptomic analysis of MIAT null mouse hearts identifies Hoxa4 as a novel downstream target of the MIAT/miR-150 axis. Hoxa4 is upregulated in cardiac fibroblasts isolated from ischemic myocardium and subjected to hypoxia/reoxygenation. HOXA4 is also upregulated in patients with HF. Moreover, Hoxa4 deficiency in mice protects the heart from MI. Lastly, protective actions of cardiac fibroblast miR-150 are partially attributed to the direct and functional repression of profibrotic Hoxa4. CONCLUSIONS: Our findings delineate a pivotal functional interaction among MIAT, miR-150, and Hoxa4 as a novel regulatory mechanism pertinent to ischemic HF.


Asunto(s)
Insuficiencia Cardíaca , Proteínas de Homeodominio , MicroARNs , Infarto del Miocardio , ARN Largo no Codificante , Factores de Transcripción , Animales , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Remodelación Ventricular
2.
Methods Cell Biol ; 166: 309-348, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34752338

RESUMEN

Cardiovascular diseases (CVDs) represent the foremost cause of mortality in the United States and worldwide. It is estimated that CVDs account for approximately 17.8 million deaths each year. Despite the advances made in understanding cellular mechanisms and gene mutations governing the pathophysiology of CVDs, they remain a significant cause of mortality and morbidity. A major segment of mammalian genomes encodes for genes that are not further translated into proteins. The roles of the majority of such noncoding ribonucleic acids (RNAs) have been puzzling for a long time. However, it is becoming increasingly clear that noncoding RNAs (ncRNAs) are dynamically expressed in different cell types and have a comprehensive selection of regulatory roles at almost every step involved in DNAs, RNAs and proteins. Indeed, ncRNAs regulate gene expression through epigenetic interactions, through direct binding to target sequences, or by acting as competing endogenous RNAs. The profusion of ncRNAs in the cardiovascular system suggests that they may modulate complex regulatory networks that govern cardiac physiology and pathology. In this review, we summarize various functions of ncRNAs and highlight the recent literature on interactions between ncRNAs with an emphasis on cardiovascular disease regulation. Furthermore, as the broad-spectrum of ncRNAs potentially establishes new avenues for therapeutic development targeting CVDs, we discuss the innovative prospects of ncRNAs as therapeutic targets for CVDs.


Asunto(s)
Enfermedades Cardiovasculares , MicroARNs , Animales , Enfermedades Cardiovasculares/genética , Epigénesis Genética/genética , Mamíferos/genética , MicroARNs/genética , ARN , ARN no Traducido/genética
3.
JCI Insight ; 6(18)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34403363

RESUMEN

MicroRNA-150 (miR-150) is downregulated in patients with multiple cardiovascular diseases and in diverse mouse models of heart failure (HF). miR-150 is significantly associated with HF severity and outcome in humans. We previously reported that miR-150 is activated by ß-blocker carvedilol (Carv) and plays a protective role in the heart using a systemic miR-150 KO mouse model. However, mechanisms that regulate cell-specific miR-150 expression and function in HF are unknown. Here, we demonstrate that potentially novel conditional cardiomyocyte-specific (CM-specific) miR-150 KO (miR-150 cKO) in mice worsens maladaptive cardiac remodeling after myocardial infarction (MI). Genome-wide transcriptomic analysis in miR-150 cKO mouse hearts identifies small proline-rich protein 1a (Sprr1a) as a potentially novel target of miR-150. Our studies further reveal that Sprr1a expression is upregulated in CMs isolated from ischemic myocardium and subjected to simulated ischemia/reperfusion, while its expression is downregulated in hearts and CMs by Carv. We also show that left ventricular SPRR1A is upregulated in patients with HF and that Sprr1a knockdown in mice prevents maladaptive post-MI remodeling. Lastly, protective roles of CM miR-150 are, in part, attributed to the direct and functional repression of proapoptotic Sprr1a. Our findings suggest a crucial role for the miR-150/SPRR1A axis in regulating CM function post-MI.


Asunto(s)
Proteínas Ricas en Prolina del Estrato Córneo/genética , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Remodelación Ventricular/genética , Antagonistas Adrenérgicos beta/farmacología , Animales , Apoptosis/fisiología , Carvedilol/farmacología , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Regulación hacia Abajo , Femenino , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...