Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37959843

RESUMEN

Oxidative stress and neuroinflammation play a pivotal role in triggering the neurodegenerative pathological cascades which characterize neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. In search for potential efficient treatments for these pathologies, that are still considered unmet medical needs, we started from the promising properties of the antidiabetic drug pioglitazone, which has been repositioned as an MAO-B inhibitor, characterized by promising neuroprotective properties. Herein, with the aim to broaden its neuroprotective profile, we tried to enrich pioglitazone with direct and indirect antioxidant properties by hanging polyphenolic and electrophilic features that are able to trigger Nrf2 pathway and the resulting cytoprotective genes' transcription, as well as serve as radical scavengers. After a preliminary screening on MAO-B inhibitory properties, caffeic acid derivative 2 emerged as the best inhibitor for potency and selectivity over MAO-A, characterized by a reversible mechanism of inhibition. Furthermore, the same compound proved to activate Nrf2 pathway by potently increasing Nrf2 nuclear translocation and strongly reducing ROS content, both in physiological and stressed conditions. Although further biological investigations are required to fully clarify its neuroprotective properties, we were able to endow the pioglitazone scaffold with potent antioxidant properties, representing the starting point for potential future pioglitazone-based therapeutics for neurodegenerative disorders.


Asunto(s)
Antioxidantes , Enfermedades Neurodegenerativas , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Pioglitazona/farmacología , Estrés Oxidativo , Enfermedades Neurodegenerativas/metabolismo , Monoaminooxidasa/metabolismo
2.
Molecules ; 28(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687158

RESUMEN

Monoamine oxidases (MAOs) are well-known pharmacological targets in neurological and neurodegenerative diseases. However, recent studies have revealed a new role for MAOs in certain types of cancer such as glioblastoma and prostate cancer, in which they have been found overexpressed. This finding is opening new frontiers for MAO inhibitors as potential antiproliferative agents. In light of our previous studies demonstrating how a polyamine scaffold can act as MAO inhibitor, our aim was to search for novel analogs with greater inhibitory potency for human MAOs and possibly with antiproliferative activity. A small in-house library of polyamine analogs (2-7) was selected to investigate the effect of constrained linkers between the inner amine functions of a polyamine backbone on the inhibitory potency. Compounds 4 and 5, characterized by a dianiline (4) or dianilide (5) moiety, emerged as the most potent, reversible, and mainly competitive MAO inhibitors (Ki < 1 µM). Additionally, they exhibited a high antiproliferative activity in the LN-229 human glioblastoma cell line (GI50 < 1 µM). The scaffold of compound 5 could represent a potential starting point for future development of anticancer agents endowed with MAO inhibitory activity.


Asunto(s)
Glioblastoma , Neoplasias de la Próstata , Humanos , Masculino , Monoaminooxidasa , Poliaminas/farmacología , Inhibidores de la Monoaminooxidasa/farmacología
3.
Eur J Med Chem ; 261: 115803, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37734258

RESUMEN

Neurodegenerative processes characterizing Alzheimer's disease (AD) are strictly related to the impairment of cholinergic and glutamatergic neurotransmitter systems which provoke synaptic loss. These experimental evidences still represent the foundation of the actual standard-of-care treatment for AD, albeit palliative, consisting on the coadministration of an acetylcholinesterase inhibitor and the NMDAR antagonist memantine. In looking for more effective treatments, we previously developed a series of galantamine-memantine hybrids where compound 1 (ARN14140) emerged with the best-balanced action toward the targets of interest paired to neuroprotective efficacy in a murine AD model. Unfortunately, it showed a suboptimal pharmacokinetic profile, which required intracerebroventricular administration for in vivo studies. In this work we designed and synthesized new hybrids with fewer rotatable bonds, which is related to higher brain exposure. Particularly, compound 2, bearing a double bond in the tether, ameliorated the biological profile of compound 1 in invitro studies, increasing cholinesterases inhibitory potencies and selective antagonism toward excitotoxic-related GluN1/2B NMDAR over beneficial GluN1/2A NMDAR. Furthermore, it showed increased plasma stability and comparable microsomal stability in vitro, paired with lower half-life and faster clearance in vivo. Remarkably, pharmacokinetic evaluations of compound 2 showed a promising increase in brain uptake in comparison to compound 1, representing the starting point for further chemical optimizations.


Asunto(s)
Enfermedad de Alzheimer , Galantamina , Humanos , Ratones , Animales , Galantamina/farmacocinética , Memantina/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Acetilcolinesterasa , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Receptores de N-Metil-D-Aspartato
5.
Molecules ; 28(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298993

RESUMEN

Over the past two decades, the strategy of conjugating polyamine tails with bioactive molecules such as anticancer and antimicrobial agents, as well as antioxidant and neuroprotective scaffolds, has been widely exploited to enhance their pharmacological profile. Polyamine transport is elevated in many pathological conditions, suggesting that the polyamine portion could improve cellular and subcellular uptake of the conjugate via the polyamine transporter system. In this review, we have presented a glimpse on the polyamine conjugate scenario, classified by therapeutic area, of the last decade with the aim of highlighting achievements and fostering future developments.


Asunto(s)
Poliaminas , Poliaminas/farmacología , Transporte Biológico
6.
Chem Rev ; 123(1): 105-229, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36399832

RESUMEN

The presence of positron emission tomography (PET) centers at most major hospitals worldwide, along with the improvement of PET scanner sensitivity and the introduction of total body PET systems, has increased the interest in the PET tracer development using the short-lived radionuclides carbon-11. In the last few decades, methodological improvements and fully automated modules have allowed the development of carbon-11 tracers for clinical use. Radiolabeling natural compounds with carbon-11 by substituting one of the backbone carbons with the radionuclide has provided important information on the biochemistry of the authentic compounds and increased the understanding of their in vivo behavior in healthy and diseased states. The number of endogenous and natural compounds essential for human life is staggering, ranging from simple alcohols to vitamins and peptides. This review collates all the carbon-11 radiolabeled endogenous and natural exogenous compounds synthesised to date, including essential information on their radiochemistry methodologies and preclinical and clinical studies in healthy subjects.


Asunto(s)
Tomografía de Emisión de Positrones , Radiofármacos , Humanos , Radioisótopos de Carbono/química , Radioquímica
7.
ACS Med Chem Lett ; 13(11): 1812-1818, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36385935

RESUMEN

Catechols have been largely investigated as antiaggregating agents toward ß-amyloid peptide. Herein, as a follow up of a previous series of hydroxycinnamic derivatives, we synthesized a small set of dihydroxy isomers for exploring the role of the reciprocal position of the two hydroxyl functions at a molecular level. Para- and ortho-derivatives effectively reduced amyloid fibrillization, while the meta-analogue was devoid of any activity in this respect. Electrochemical analyses showed that the antiaggregating potency correlates with the oxidation potential, hence indicating the proelectrophilic character as a prerequisite for activity. Interestingly, mass spectrometry studies and quantum mechanical calculations revealed different modes of action for active para- and ortho-derivatives, involving covalent or noncovalent interactions with ß-amyloid. The distinctive mode of action is also translated into a different cytotoxicity profile. This work clearly shows how apparently minimal structural modifications can completely change the compound behavior and generate alternative mechanisms of action of proelectrophilic chemical probes.

8.
Antioxidants (Basel) ; 11(7)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35883876

RESUMEN

Antioxidant systems play key roles in many elderly diseases, including age-related macular degeneration (AMD). Oxidative stress, autophagy impairment and inflammation are well-described in AMD, especially in retinal pigment epithelial (RPE) cells. The master regulator of antioxidant defense Nrf2 has been linked to AMD, autophagy and inflammation. In this study, in human ARPE-19 cells, some nature-inspired hybrids (NIH1-3) previously shown to induce Nrf2-mediated protection against oxidative stress were further investigated for their potential against cellular stress caused by dysfunction of protein homeostasis. NIH1-3 compounds increased the expression of two Nrf2-target genes coding defense proteins, HO-1 and SQSTM1/p62, in turn exerting beneficial effects on intracellular redox balance without modification of the autophagy flux. NIH1-3 treatments predisposed ARPE-19 cells to a better response to following exposure to proteasome and autophagy inhibitors, as revealed by the increase in cell survival and decreased secretion of the pro-inflammatory IL-8 compared to NIH-untreated cells. Interestingly, NIH4 compound, through an Nrf2-independent pathway, also increased cell viability and decreased IL-8 secretion, although to a lesser extent than NIH1-3, suggesting that all NIHs are worthy of further investigation into their cytoprotective properties. This study confirms Nrf2 as a valuable pharmacological target in contexts characterized by oxidative stress, such as AMD.

9.
Curr Med Chem ; 29(27): 4738-4755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34939537

RESUMEN

Fyn kinase is a member of the Src non-receptor tyrosine kinase family. Fyn is involved in multiple signaling pathways extending from cell proliferation and differentiation to cell adhesion and cell motility, and it has been found to be overexpressed in various types of cancers. In the central nervous system, Fyn exerts several different functions such as axon-glial signal transduction, oligodendrocyte maturation, and myelination, and it is implicated in neuroinflammatory processes. Based on these premises, Fyn emerges as an attractive target in cancer and neurodegenerative disease therapy, particularly Alzheimer's disease (AD), based on its activation by Aß via cellular prion protein and its interaction with tau protein. However, Fyn is also a challenging target since the Fyn inhibitors discovered so far, due to the relevant homology of Fyn with other kinases, suffer from off-target effects. This review covers the efforts performed in the last decade to identify and optimize small molecules that effectively inhibit Fyn, both in enzymatic and in cell assays, including drug repositioning practices, as an opportunity for therapeutic intervention in neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/metabolismo , Diferenciación Celular , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fosforilación , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Transducción de Señal
10.
Antioxidants (Basel) ; 10(8)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34439544

RESUMEN

Oxidative stress (OS) plays a key role in retinal dysfunctions and acts as a major trigger of inflammatory and neurodegenerative processes in several retinal diseases. To prevent OS-induced retinal damage, approaches based on the use of natural compounds are actively investigated. Recently, structural features from curcumin and diallyl sulfide have been combined in a nature-inspired hybrid (NIH1), which has been described to activate transcription nuclear factor erythroid-2-related factor-2 (Nrf2), the master regulator of the antioxidant response, in different cell lines. We tested the antioxidant properties of NIH1 in mouse retinal explants. NIH1 increased Nrf2 nuclear translocation, Nrf2 expression, and both antioxidant enzyme expression and protein levels after 24 h or six days of incubation. Possible toxic effects of NIH1 were excluded since it did not alter the expression of apoptotic or gliotic markers. In OS-treated retinal explants, NIH1 strengthened the antioxidant response inducing a massive and persistent expression of antioxidant enzymes up to six days of incubation. These effects resulted in prevention of the accumulation of reactive oxygen species, of apoptotic cell death, and of gliotic reactivity. Together, these data indicate that a strategy based on NIH1 to counteract OS could be effective for the treatment of retinal diseases.

11.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003644

RESUMEN

An adequate protection from oxidative and inflammatory reactions, together with the promotion of oligodendrocyte progenitor (OP) differentiation, is needed to recover from myelin damage in demyelinating diseases. Mitochondria are targets of inflammatory and oxidative insults and are essential in oligodendrocyte differentiation. It is known that nuclear factor-erythroid 2-related factor/antioxidant responsive element (NRF2/ARE) and peroxisome proliferator-activated receptor gamma/PPAR-γ response element (PPAR-γ/PPRE) pathways control inflammation and overcome mitochondrial impairment. In this study, we analyzed the effects of activators of these pathways on mitochondrial features, protection from inflammatory/mitochondrial insults and cell differentiation in OP cultures, to depict the specificities and similarities of their actions. We used dimethyl-fumarate (DMF) and pioglitazone (pio) as agents activating NRF2 and PPAR-γ, respectively, and two synthetic hybrids acting differently on the NRF2/ARE pathway. Only DMF and compound 1 caused early effects on the mitochondria. Both DMF and pio induced mitochondrial biogenesis but different antioxidant repertoires. Moreover, pio induced OP differentiation more efficiently than DMF. Finally, DMF, pio and compound 1 protected from tumor necrosis factor-alpha (TNF-α) insult, with pio showing faster kinetics of action and compound 1 a higher activity than DMF. In conclusion, NRF2 and PPAR-γ by inducing partially overlapping pathways accomplish complementary functions aimed at the preservation of mitochondrial function, the defense against oxidative stress and the promotion of OP differentiation.


Asunto(s)
Mitocondrias/genética , Factor 2 Relacionado con NF-E2/genética , Oligodendroglía/efectos de los fármacos , PPAR gamma/genética , Animales , Antioxidantes/farmacología , Diferenciación Celular/efectos de los fármacos , Dimetilfumarato/farmacología , Humanos , Mitocondrias/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Biogénesis de Organelos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Pioglitazona/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética
12.
Molecules ; 25(17)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887400

RESUMEN

Memantine (3,5-dimethyladamantan-1-amine) is an orally active, noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist approved for treatment of moderate-to-severe Alzheimer's disease (AD), a neurodegenerative condition characterized by a progressive cognitive decline. Unfortunately, memantine as well as the other class of drugs licensed for AD treatment acting as acetylcholinesterase inhibitors (AChEIs), provide only symptomatic relief. Thus, the urgent need in AD drug development is for disease-modifying therapies that may require approaching targets from more than one path at once or multiple targets simultaneously. Indeed, increasing evidence suggests that the modulation of a single neurotransmitter system represents a reductive approach to face the complexity of AD. Memantine is viewed as a privileged NMDAR-directed structure, and therefore, represents the driving motif in the design of a variety of multi-target directed ligands (MTDLs). In this review, we present selected examples of small molecules recently designed as MTDLs to contrast AD, by combining in a single entity the amantadine core of memantine with the pharmacophoric features of known neuroprotectants, such as antioxidant agents, AChEIs and Aß-aggregation inhibitors.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Memantina/uso terapéutico , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Diseño de Fármacos , Humanos , Memantina/química , Memantina/farmacología , Modelos Moleculares
13.
Front Pharmacol ; 11: 1256, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922294

RESUMEN

The transcription factor Nrf2 coordinates a multifaceted response to various forms of stress and to inflammatory processes, maintaining a homeostatic intracellular environment. Nrf2 anti-inflammatory activity has been related to the crosstalk with the transcription factor NF-κB, a pivotal mediator of inflammatory responses and of multiple aspects of innate and adaptative immune functions. However, the underlying molecular basis has not been completely clarified. By combining into new chemical entities, the hydroxycinnamoyl motif from curcumin and the allyl mercaptan moiety of garlic organosulfur compounds, we tested a set of molecules, carrying (pro)electrophilic features responsible for the activation of the Nrf2 pathway, as valuable pharmacologic tools to dissect the mechanistic connection between Nrf2 and NF-κB. We investigated whether the activation of the Nrf2 pathway by (pro)electrophilic compounds may interfere with the secretion of pro-inflammatory cytokines, during immune stimulation, in a human immortalized monocyte-like cell line (THP-1). The capability of compounds to affect the NF-κB pathway was also evaluated. We assessed the compounds-mediated regulation of cytokine and chemokine release by using Luminex X-MAP® technology in human primary peripheral blood mononuclear cells (PBMCs) upon LPS stimulation. We found that all compounds, also in the absence of electrophilic moieties, significantly suppressed the LPS-evoked secretion of pro-inflammatory cytokines such as TNFα and IL-1ß, but not of IL-8, in THP-1 cells. A reduction in the release of pro-inflammatory mediators similar to that induced by the compounds was also observed after siRNA mediated-Nrf2 knockdown, thus indicating that the attenuation of cytokine secretion cannot be directly ascribed to the activation of Nrf2 signaling pathway. Moreover, all compounds, with the exception of compound 1, attenuated the LPS-induced activation of the NF-κB pathway, by reducing the upstream phosphorylation of IκB, the NF-κB nuclear translocation, as well as the activation of NF-κB promoter. In human PBMCs, compound 4 and CURC attenuated TNFα release as observed in THP-1 cells, and all compounds acting as Nrf2 inducers significantly decreased the levels of MCP-1/CCL2, as well as the release of the pro-inflammatory cytokine IL-12. Altogether, the compounds induced a differential modulation of innate immune cytokine release, by differently regulating Nrf2 and NF-κB intracellular signaling pathways.

14.
Front Pharmacol ; 11: 844, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581803

RESUMEN

Age-related macular degeneration (AMD) is a common disease with a multifactorial aetiology, still lacking effective and curative therapies. Among the early events triggering AMD is the deterioration of the retinal pigment epithelium (RPE), whose fundamental functions assure good health of the retina. RPE is physiologically exposed to high levels of oxidative stress during its lifespan; thus, the integrity and well-functioning of its antioxidant systems are crucial to maintain RPE homeostasis. Among these defensive systems, the Nrf2-pathway plays a primary role. Literature evidence suggests that, in aged and especially in AMD RPE, there is an imbalance between the increased pro-oxidant stress, and the impaired endogenous detoxifying systems, finally reverberating on RPE functions and survival. In this in vitro study on wild type (WT) and Nrf2-silenced (siNrf2) ARPE-19 cells exposed to various AMD-related noxae (H2O2, 4-HNE, MG132 + Bafilomycin), we show that the Nrf2-pathway activation is a physiological protective stress response, leading downstream to an up-regulation of the Nrf2-targets HO1 and p62, and that a Nrf2 impairment predisposes the cells to a higher vulnerability to stress. In search of new pharmacologically active compounds potentially useful for AMD, four nature-inspired hybrids (NIH) were individually characterized as Nrf2 activators, and their pharmacological activity was investigated in ARPE-19 cells. The Nrf2 activator dimethyl-fumarate (DMF; 10 µM) was used as a positive control. Three out of the four tested NIH (5 µM) display both direct and indirect antioxidant properties, in addition to cytoprotective effects in ARPE-19 cells under pro-oxidant stimuli. The observed pro-survival effects require the presence of Nrf2, with the exception of the lead compound NIH1, able to exert a still significant, albeit lower, protection even in siNrf2 cells, supporting the concept of the existence of both Nrf2-dependent and independent pathways mediating pro-survival effects. In conclusion, by using some pharmacological tools as well as a reference compound, we dissected the role of the Nrf2-pathway in ARPE-19 stress response, suggesting that the Nrf2 induction represents an efficient defensive strategy to prevent the stress-induced damage.

15.
ChemMedChem ; 15(15): 1374-1389, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32578963

RESUMEN

Cannabinoid subtype 2 receptors (CB2 Rs) are G protein-coupled receptors (GPCRs) belonging to the endocannabinoid system, a complex network of signalling pathways leading to the regulation of key physiological processes. Interestingly, CB2 Rs are strongly up-regulated in pathological conditions correlated with the onset of inflammatory events like cancer and neurodegenerative diseases. Therefore, CB2 Rs represent an important biological target for therapeutic as well as diagnostic purposes. No CB2 R-selective drugs are yet on the market, thus underlining a that deeper comprehension of CB2 Rs' complex activation pathways and their role in the regulation of diseases is needed. Herein, we report an overview of pharmacological and imaging tools such as fluorescent, positron emission tomography (PET), photochromic and covalent selective CB2 R ligands. These molecular probes can be used in vitro as well as in vivo to investigate and explore the unravelled role(s) of CB2 Rs, and they can help to design suitable CB2 R-targeted drugs.


Asunto(s)
Fluorescencia , Colorantes Fluorescentes/farmacología , Sondas Moleculares/farmacología , Tomografía de Emisión de Positrones , Receptor Cannabinoide CB2/agonistas , Relación Dosis-Respuesta a Droga , Colorantes Fluorescentes/química , Humanos , Ligandos , Sondas Moleculares/química , Estructura Molecular , Radiofármacos , Relación Estructura-Actividad
16.
Eur J Med Chem ; 180: 111-120, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31301562

RESUMEN

N-methyl-d-aspartate receptors (NMDAR) are critically involved in the pathogenesis of Alzheimer's disease (AD). Acting as an open-channel blocker, the anti-AD drug memantine preferentially targets NMDAR overactivation, which has been proposed to trigger neurotoxic events mediated by amyloid ß peptide (Aß) and oxidative stress. In this study, we applied a multifunctional approach by conjugating memantine to ferulic acid, which is known to protect the brain from Aß neurotoxicity and neuronal death caused by ROS. The most interesting compound (7) behaved, like memantine, as a voltage-dependent antagonist of NMDAR (IC50 = 6.9 µM). In addition, at 10 µM concentration, 7 exerted antioxidant properties both directly and indirectly through the activation of the Nrf-2 pathway in SH-SY5Y cells. At the same concentration, differently from the parent compounds memantine and ferulic acid alone, it was able to modulate Aß production, as revealed by the observed increase of the non-amyloidogenic sAPPα in H4-SW cells. These findings suggest that compound 7 may represent a promising tool for investigating NMDAR-mediated neurotoxic events involving Aß burden and oxidative damage.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Ácidos Cumáricos/farmacología , Memantina/farmacología , Fármacos Neuroprotectores/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Supervivencia Celular/efectos de los fármacos , Ácidos Cumáricos/síntesis química , Ácidos Cumáricos/química , Relación Dosis-Respuesta a Droga , Humanos , Memantina/síntesis química , Memantina/química , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Estrés Oxidativo/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
17.
Future Med Chem ; 11(7): 707-721, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30942112

RESUMEN

Targeted covalent modification is assuming consolidated importance in drug discovery. In this context, the electrophilic tuning of redox-dependent cell signaling is attracting major interest, as it opens prospect for treating numerous pathologic conditions. Herein, we discuss the rationale and the issues of electrophile-based approaches, focusing on the transcriptional Nrf2-Keap1 pathway as a test case. We also highlight relevant medicinal chemistry strategies researchers have devised to meet the ambitious goal, dwelling on the investigational and therapeutic potential of modulating redox-signaling networks through regulatory cysteine switches.


Asunto(s)
Antioxidantes/química , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Antioxidantes/farmacología , Cisteína/metabolismo , Dimetilfumarato/química , Dimetilfumarato/farmacología , Diseño de Fármacos , Humanos , Estructura Molecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Oxidación-Reducción , Estrés Oxidativo , Transducción de Señal , Relación Estructura-Actividad
18.
J Enzyme Inhib Med Chem ; 34(1): 740-752, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30829081

RESUMEN

Fourteen polyamine analogues, asymmetric or symmetric substituted spermine (1-9) or methoctramine (10-14) analogues, were evaluated as potential inhibitors or substrates of two enzymes of the polyamine catabolic pathway, spermine oxidase (SMOX) and acetylpolyamine oxidase (PAOX). Compound 2 turned out to be the best substrate for PAOX, having the highest affinity and catalytic efficiency with respect to its physiological substrates. Methoctramine (10), a well-known muscarinic M2 receptor antagonist, emerged as the most potent competitive PAOX inhibitor known so far (Ki = 10 nM), endowed with very good selectivity compared with SMOX (Ki=1.2 µM vs SMOX). The efficacy of methoctramine in inhibiting PAOX activity was confirmed in the HT22 cell line. Methoctramine is a very promising tool in the design of drugs targeting the polyamine catabolism pathway, both to understand the physio-pathological role of PAOX vs SMOX and for pharmacological applications, being the polyamine pathway involved in various pathologies.


Asunto(s)
Diaminas/farmacología , Inhibidores Enzimáticos/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/antagonistas & inhibidores , Poliaminas/farmacología , Diaminas/síntesis química , Diaminas/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Poliaminas/síntesis química , Poliaminas/química , Relación Estructura-Actividad , Poliamino Oxidasa
19.
Nucl Med Biol ; 68-69: 14-21, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30578137

RESUMEN

INTRODUCTION: Primary aldosteronism accounts for 6-15% of hypertension cases, the single biggest contributor to global morbidity and mortality. Whilst ~50% of these patients have unilateral aldosterone-producing adenomas, only a minority of these have curative surgery as the current diagnosis of unilateral disease is poor. Carbon-11 radiolabelled metomidate ([11C]MTO) is a positron emission tomography (PET) radiotracer able to selectively identify CYP11B1/2 expressing adrenocortical lesions of the adrenal gland. However, the use of [11C]MTO is limited to PET centres equipped with on-site cyclotrons due to its short half-life of 20.4 min. Radiolabelling a fluorometomidate derivative with fluorine-18 (radioactive half life 109.8 min) in the para-aromatic position ([18F]FAMTO) has the potential to overcome this disadvantage and allow it to be transported to non-cyclotron-based imaging centres. METHODS: Two strategies for the one-step radio-synthesis of [18F]FAMTO were developed. [18F]FAMTO was obtained via radiofluorination via use of sulfonium salt (1) and boronic ester (2) precursors. [18F]FAMTO was evaluated in vitro by autoradiography of pig adrenal tissues and in vivo by determining its biodistribution in rodents. Rat plasma and urine were analysed to determine [18F]FAMTO metabolites. RESULTS: [18F]FAMTO is obtained from sulfonium salt (1) and boronic ester (2) precursors in 7% and 32% non-isolated radiochemical yield (RCY), respectively. Formulated [18F]FAMTO was obtained with >99% radiochemical and enantiomeric purity with a synthesis time of 140 min from the trapping of [18F]fluoride ion on an anion-exchange resin (QMA cartridge). In vitro autoradiography of [18F]FAMTO demonstrated exquisite specific binding in CYP11B-rich pig adrenal glands. In vivo [18F]FAMTO rapidly accumulates in adrenal glands. Liver uptake was about 34% of that in the adrenals and all other organs were <12% of the adrenal uptake at 60 min post-injection. Metabolite analysis showed 13% unchanged [18F]FAMTO in blood at 10 min post-administration and rapid urinary excretion. In vitro assays in human blood showed a free fraction of 37.5%. CONCLUSIONS: [18F]FAMTO, a new 18F-labelled analogue of metomidate, was successfully synthesised. In vitro and in vivo characterization demonstrated high selectivity towards aldosterone-producing enzymes (CYP11B1 and CYP11B2), supporting the potential of this radiotracer for human investigation.


Asunto(s)
Glándulas Suprarrenales/diagnóstico por imagen , Citocromo P-450 CYP11B2/metabolismo , Etomidato/análogos & derivados , Radioisótopos de Flúor , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Esteroide 11-beta-Hidroxilasa/metabolismo , Glándulas Suprarrenales/metabolismo , Animales , Estabilidad de Medicamentos , Etomidato/química , Etomidato/metabolismo , Etomidato/farmacocinética , Humanos , Marcaje Isotópico , Masculino , Trazadores Radiactivos , Radioquímica , Ratas , Ratas Sprague-Dawley , Porcinos , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...