Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Struct Biol ; 216(3): 108108, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944401

RESUMEN

Developments in direct electron detector technology have played a pivotal role in enabling high-resolution structural studies by cryo-EM at 200 and 300 keV. Yet, theory and recent experiments indicate advantages to imaging at 100 keV, energies for which the current detectors have not been optimized. In this study, we evaluated the Gatan Alpine detector, designed for operation at 100 and 200 keV. Compared to the Gatan K3, Alpine demonstrated a significant DQE improvement at these energies, specifically a âˆ¼ 4-fold improvement at Nyquist at 100 keV. In single-particle cryo-EM experiments, Alpine datasets yielded better than 2 Å resolution reconstructions of apoferritin at 120 and 200 keV on a ThermoFisher Scientific (TFS) Glacios microscope fitted with a non-standard SP-Twin lens. We also achieved a âˆ¼ 3.2 Å resolution reconstruction of a 115 kDa asymmetric protein complex, proving Alpine's effectiveness with complex biological samples. In-depth analysis revealed that Alpine reconstructions are comparable to K3 reconstructions at 200 keV, and remarkably, reconstruction from Alpine at 120 keV on a TFS Glacios surpassed all but the 300 keV data from a TFS Titan Krios with GIF/K3. Additionally, we show Alpine's capability for high-resolution data acquisition and screening on lower-end systems by obtaining âˆ¼ 3 Å resolution reconstructions of apoferritin and aldolase at 100 keV and detailed 2D averages of a 55 kDa sample using a side-entry cryo holder. Overall, we show that Gatan Alpine performs well with the standard 200 keV imaging systems and may potentially capture the benefits of lower accelerating voltages, bringing smaller sized particles within the scope of cryo-EM.

2.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38328110

RESUMEN

Transthyretin (TTR) is a natively tetrameric thyroxine transporter found in blood and cerebrospinal fluid whose misfolding and aggregation causes transthyretin amyloidosis. A rational drug design campaign identified the small molecule tafamidis (Vyndaqel/Vyndamax) as an effective stabilizer of the native TTR fold, and this aggregation inhibitor is regulatory agency-approved for the treatment of TTR amyloidosis. Despite 50 years of structural studies on TTR and this triumph of structure-based drug design, there remains a notable dearth of structural information available to understand ligand binding allostery and amyloidogenic TTR unfolding intermediates. We used single-particle cryo-electron microscopy (cryo-EM) to investigate the conformational landscape of this 55 kiloDalton tetramer in the absence and presence of one or two ligands, revealing inherent asymmetries in the tetrameric architecture and previously unobserved conformational states. These findings provide critical mechanistic insights into negatively cooperative ligand binding and the structural pathways responsible for TTR amyloidogenesis. This study underscores the capacity of cryo-EM to provide new insights into protein structures that have been historically considered too small to visualize and to identify pharmacological targets suppressed by the confines of the crystal lattice, opening uncharted territory in structure-based drug design.

3.
bioRxiv ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38405886

RESUMEN

Developments in direct electron detector technology have played a pivotal role in enabling high-resolution structural studies by cryo-EM at 200 and 300 keV. Yet, theory and recent experiments indicate advantages to imaging at 100 keV, energies for which the current detectors have not been optimized. In this study, we evaluated the Gatan Alpine detector, designed for operation at 100 and 200 keV. Compared to the Gatan K3, Alpine demonstrated a significant DQE improvement at these voltages, specifically a ~4-fold improvement at Nyquist at 100 keV. In single-particle cryo-EM experiments, Alpine datasets yielded better than 2 Å resolution reconstructions of apoferritin at 120 and 200 keV on a ThermoFisher Scientific (TFS) Glacios microscope. We also achieved a ~3.2 Å resolution reconstruction for a 115 kDa asymmetric protein complex, proving its effectiveness with complex biological samples. In-depth analysis revealed that Alpine reconstructions are comparable to K3 reconstructions at 200 keV, and remarkably, reconstruction from Alpine at 120 keV on a TFS Glacios surpassed all but the 300 keV data from a TFS Titan Krios with GIF/K3. Additionally, we show Alpine's capability for high-resolution data acquisition and screening on lower-end systems by obtaining ~3 Å resolution reconstructions of apoferritin and aldolase at 100 keV and detailed 2D averages of a 55 kDa sample using a side-entry cryo holder. Overall, we show that Gatan Alpine performs well with the standard 200 keV imaging systems and may potentially capture the benefits of lower accelerating voltages, possibly bringing smaller sized particles within the scope of cryo-EM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...