Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; 21(3): e202301950, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38258537

RESUMEN

The increased expression of VEGFR-2 in a variety of cancer cells promotes a cascade of cellular responses that improve cell survival, growth, and proliferation. Heterocycles are common structural elements in medicinal chemistry and commercially available medications that target several biological pathways and induce cell death in cancer cells. Herein, the evaluation of indazolyl-acyl hydrazones as antioxidant and anticancer agents is reported. Compounds 4e and 4j showed inhibitory activity in free radical scavenging assays (DPPH and FRPA). The titled compounds were employed in cell viability studies using MCF-7 cells, and it was observed that compounds 4f and 4j exhibited IC50 values 15.83 µM and 5.72 µM, respectively. In silico docking revealed the favorable binding energies of -7.30 kcal/mol and -8.04 kcal/mol for these compounds towards Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2), respectively. In conclusion, compounds with antioxidant activity and that target VEGFR-2 in breast cancer cells are reported.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Estructura Molecular , Relación Estructura-Actividad , Antioxidantes/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Neoplasias de la Mama/tratamiento farmacológico , Hidrazonas/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología , Proliferación Celular , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales
2.
NPJ Precis Oncol ; 8(1): 8, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200104

RESUMEN

Aberrant activation of the PI3K/AKT signaling axis along with the sustained phosphorylation of downstream BAD is associated with a poor outcome of TNBC. Herein, the phosphorylated to non-phosphorylated ratio of BAD, an effector of PI3K/AKT promoting cell survival, was observed to be correlated with worse clinicopathologic indicators of outcome, including higher grade, higher proliferative index and lymph node metastasis. The structural optimization of a previously reported inhibitor of BAD-Ser99 phosphorylation was therefore achieved to generate a small molecule inhibiting the phosphorylation of BAD at Ser99 with enhanced potency and improved oral bioavailability. The molecule 2-((4-(2,3-dichlorophenyl)piperazin-1-yl)(pyridin-3-yl)methyl) phenol (NCK) displayed no toxicity at supra-therapeutic doses and was therefore assessed for utility in TNBC. NCK promoted apoptosis and G0/G1 cell cycle arrest of TNBC cell lines in vitro, concordant with gene expression analyses, and reduced in vivo xenograft growth and metastatic burden, demonstrating efficacy as a single agent. Additionally, combinatorial oncology compound library screening demonstrated that NCK synergized with tyrosine kinase inhibitors (TKIs), specifically OSI-930 or Crizotinib in reducing cell viability and promoting apoptosis of TNBC cells. The synergistic effects of NCK and TKIs were also observed in vivo with complete regression of a percentage of TNBC cell line derived xenografts and prevention of metastatic spread. In patient-derived TNBC xenograft models, NCK prolonged survival times of host animals, and in combination with TKIs generated superior survival outcomes to single agent treatment. Hence, this study provides proof of concept to further develop rational and mechanistic based therapeutic strategies to ameliorate the outcome of TNBC.

3.
Chem Biol Interact ; 386: 110780, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37879592

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) promotes breast cancer malignancy and controls key processes including proliferation, differentiation, and survival in breast cancer cells. Although many methods for treating breast cancer have been improved, there is still a need to discover and develop new methods for breast cancer treatment. Therefore, we synthesized a new compound 2-(4-(2,3-dichlorophenyl)piperazin-1-yl)-1-(3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (DIP). We aimed to evaluate the anti-cancer effect of DIP in breast cancer cells and clarify its mode of action. We noted that DIP abrogated STAT3 activation and STAT3 upstream kinases janus-activated kinase (JAK) and Src kinases. In addition, DIP promoted the levels of SHP-1 protein and acts as SHP-1 agonist. Further, silencing of SHP-1 gene reversed the DIP-induced attenuation of STAT3 activation and apoptosis. DIP also induced apoptosis through modulating PARP cleavage and oncogenic proteins. Moreover, DIP also significantly enhanced the apoptotic effects of docetaxel through the suppression of STAT3 activation in breast cancer cells. Overall, our data indicated that DIP may act as a suppressor of STAT3 cascade, and it could be a new therapeutic strategy in breast cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Factor de Transcripción STAT3/metabolismo , Proliferación Celular , Apoptosis , Línea Celular Tumoral , Fosforilación
4.
Molecules ; 28(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446915

RESUMEN

Histone deacetylases (HDACs) are an attractive drug target for the treatment of human breast cancer (BC), and therefore, HDAC inhibitors (HDACis) are being used in preclinical and clinical studies. The need to understand the scope of the mode of action of HDACis, as well as the report of the co-crystal structure of HDAC6/SS-208 at the catalytic site, provoked us to develop an isoxazole-based lead structure called 4-(2-(((1-(3,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio) pyrimidin-4-yl) morpholine (5h) and 1-(2-(((3-(p-tolyl) isoxazol-5-yl)methyl)thio) pyrimidin-4-yl) piperidin-4-one (6l) that targets HDACs in human BC cells. We found that the compound 5h or 6l could inhibit the proliferation of BC cells with an IC50 value of 8.754 and 11.71 µM, respectively. Our detailed in silico analysis showed that 5h or 6l compounds could target HDAC in MCF-7 cells. In conclusion, we identified a new structure bearing triazole, isoxazole, and thiouracil moiety, which could target HDAC in MCF-7 cells and serve as a base to make new drugs against cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Histona Desacetilasas/metabolismo , Triazoles/química , Línea Celular Tumoral , Isoxazoles/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/química , Proliferación Celular , Antineoplásicos/química , Relación Estructura-Actividad
5.
Molecules ; 28(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37110684

RESUMEN

Human epidermal growth factor receptor 2 (HER2)-positive breast cancer exhibits early relapses, poor prognoses, and high recurrence rates. Herein, a JNK-targeting compound has been developed that may be of utility in HER2-positive mammary carcinoma. The design of a pyrimidine-and coumarin-linked structure targeting JNK was explored and the lead structure PC-12 [4-(3-((2-((4-chlorobenzyl)thio) pyrimidin-4-yl)oxy)propoxy)-6-fluoro-2H-chromen-2-one (5d)] was observed to selectively inhibit the proliferation of HER2-positive BC cells. The compound PC-12 exerted DNA damage and induced apoptosis in HER-2 positive BC cells more significantly compared to HER-2 negative BC cells. PC-12 induced PARP cleavage and down-regulated the expression of IAP-1, BCL-2, SURVIVIN, and CYCLIN D1 in BC cells. In silico and theoretical calculations showed that PC-12 could interact with JNK, and in vitro studies demonstrated that it enhanced JNK phosphorylation through ROS generation. Overall, these findings will assist the discovery of new compounds targeting JNK for use in HER2-positive BC cells.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Humanos , Femenino , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Cumarinas/farmacología , Pirimidinas , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...