Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Cell ; 42(8): 1450-1466.e11, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137729

RESUMEN

Glioblastoma (GBM) is an aggressive brain cancer with limited therapeutic options. Natural killer (NK) cells are innate immune cells with strong anti-tumor activity and may offer a promising treatment strategy for GBM. We compared the anti-GBM activity of NK cells engineered to express interleukin (IL)-15 or IL-21. Using multiple in vivo models, IL-21 NK cells were superior to IL-15 NK cells both in terms of safety and long-term anti-tumor activity, with locoregionally administered IL-15 NK cells proving toxic and ineffective at tumor control. IL-21 NK cells displayed a unique chromatin accessibility signature, with CCAAT/enhancer-binding proteins (C/EBP), especially CEBPD, serving as key transcription factors regulating their enhanced function. Deletion of CEBPD resulted in loss of IL-21 NK cell potency while its overexpression increased NK cell long-term cytotoxicity and metabolic fitness. These results suggest that IL-21, through C/EBP transcription factors, drives epigenetic reprogramming of NK cells, enhancing their anti-tumor efficacy against GBM.


Asunto(s)
Neoplasias Encefálicas , Proteína delta de Unión al Potenciador CCAAT , Glioblastoma , Interleucinas , Células Asesinas Naturales , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Glioblastoma/inmunología , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/terapia , Interleucinas/genética , Interleucinas/metabolismo , Interleucinas/inmunología , Humanos , Animales , Ratones , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Interleucina-15/genética , Interleucina-15/metabolismo , Interleucina-15/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
iScience ; 27(6): 110096, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38957791

RESUMEN

Recent developments in immunotherapy, including immune checkpoint blockade (ICB) and adoptive cell therapy (ACT), have encountered challenges such as immune-related adverse events and resistance, especially in solid tumors. To advance the field, a deeper understanding of the molecular mechanisms behind treatment responses and resistance is essential. However, the lack of functionally characterized immune-related gene sets has limited data-driven immunological research. To address this gap, we adopted non-negative matrix factorization on 83 human bulk RNA sequencing (RNA-seq) datasets and constructed 28 immune-specific gene sets. After rigorous immunologist-led manual annotations and orthogonal validations across immunological contexts and functional omics data, we demonstrated that these gene sets can be applied to refine pan-cancer immune subtypes, improve ICB response prediction and functionally annotate spatial transcriptomic data. These functional gene sets, informing diverse immune states, will advance our understanding of immunology and cancer research.

3.
Cancer Discov ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900051

RESUMEN

Multiple factors in the design of a chimeric antigen receptor (CAR) influence CAR T-cell activity, with costimulatory signals being a key component. Yet, the impact of costimulatory domains on the downstream signaling and subsequent functionality of CAR-engineered natural killer (NK) cells remains largely unexplored. Here, we evaluated the impact of various costimulatory domains on CAR-NK cell activity, using a CD70-targeting CAR. We found that CD28, a costimulatory molecule not inherently present in mature NK cells, significantly enhanced the antitumor efficacy and long-term cytotoxicity of CAR-NK cells both in vitro and in multiple xenograft models of hematologic and solid tumors. Mechanistically, we showed that CD28 linked to CD3Z creates a platform that recruits critical kinases, such as LCK and ZAP70, initiating a signaling cascade that enhances CAR-NK cell function. Our study provides insights into how CD28 costimulation enhances CAR-NK cell function and supports its incorporation in NK-based CARs for cancer immunotherapy.

4.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798470

RESUMEN

Recent developments in immunotherapy, including immune checkpoint blockade (ICB) and adoptive cell therapy, have encountered challenges such as immune-related adverse events and resistance, especially in solid tumors. To advance the field, a deeper understanding of the molecular mechanisms behind treatment responses and resistance is essential. However, the lack of functionally characterized immune-related gene sets has limited data-driven immunological research. To address this gap, we adopted non-negative matrix factorization on 83 human bulk RNA-seq datasets and constructed 28 immune-specific gene sets. After rigorous immunologist-led manual annotations and orthogonal validations across immunological contexts and functional omics data, we demonstrated that these gene sets can be applied to refine pan-cancer immune subtypes, improve ICB response prediction and functionally annotate spatial transcriptomic data. These functional gene sets, informing diverse immune states, will advance our understanding of immunology and cancer research.

5.
Virchows Arch ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388965

RESUMEN

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. While induction chemotherapy leads to remission in most patients, a significant number will experience relapse. Therefore, there is a need for novel therapies that can improve remission rates in patients with relapsed and refractory AML. CD70 is the natural ligand for CD27 (a member of the TNF superfamily) and appears to be a promising therapeutic target. Consequently, there is considerable interest in developing chimeric antigen receptor (CAR) T-cell therapy products that can specifically target CD70 in various neoplasms, including AML. In this study, we employed routine diagnostic techniques, such as immunohistochemistry and flow cytometry, to investigate the expression of CD70 in bone marrow samples from treatment-naïve and relapsed AML patients after hypomethylating agents (HMA). Also, we evaluated the impact of HMA on CD70 expression and examined CD70 expression in various leukemic cell subsets and normal hematopoietic progenitors.

7.
Nat Med ; 30(3): 772-784, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38238616

RESUMEN

There is a pressing need for allogeneic chimeric antigen receptor (CAR)-immune cell therapies that are safe, effective and affordable. We conducted a phase 1/2 trial of cord blood-derived natural killer (NK) cells expressing anti-CD19 chimeric antigen receptor and interleukin-15 (CAR19/IL-15) in 37 patients with CD19+ B cell malignancies. The primary objectives were safety and efficacy, defined as day 30 overall response (OR). Secondary objectives included day 100 response, progression-free survival, overall survival and CAR19/IL-15 NK cell persistence. No notable toxicities such as cytokine release syndrome, neurotoxicity or graft-versus-host disease were observed. The day 30 and day 100 OR rates were 48.6% for both. The 1-year overall survival and progression-free survival were 68% and 32%, respectively. Patients who achieved OR had higher levels and longer persistence of CAR-NK cells. Receiving CAR-NK cells from a cord blood unit (CBU) with nucleated red blood cells ≤ 8 × 107 and a collection-to-cryopreservation time ≤ 24 h was the most significant predictor for superior outcome. NK cells from these optimal CBUs were highly functional and enriched in effector-related genes. In contrast, NK cells from suboptimal CBUs had upregulation of inflammation, hypoxia and cellular stress programs. Finally, using multiple mouse models, we confirmed the superior antitumor activity of CAR/IL-15 NK cells from optimal CBUs in vivo. These findings uncover new features of CAR-NK cell biology and underscore the importance of donor selection for allogeneic cell therapies. ClinicalTrials.gov identifier: NCT03056339 .


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Neoplasias , Receptores Quiméricos de Antígenos , Animales , Ratones , Humanos , Receptores Quiméricos de Antígenos/genética , Interleucina-15 , Células Asesinas Naturales , Inmunoterapia Adoptiva/efectos adversos , Antígenos CD19 , Proteínas Adaptadoras Transductoras de Señales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...