Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(28): 11884-11897, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37404174

RESUMEN

The interfacial properties between perovskite photoactive and charge transport layers are critical for device performance and operational stability. Therefore, an accurate theoretical description of the link between surface dipoles and work functions is of scientific and practical interest. We show that for a CsPbBr3 perovskite surface functionalized by dipolar ligand molecules, the interplay between surface dipoles, charge transfers, and local strain effects leads to upward or downward shifts of the valence level. We further demonstrate that the contribution of individual molecular entities to the surface dipoles and electric susceptibilities are essentially additive. Finally, we compare our results to those predicted from conventional classical approaches based on a capacitor model that links the induced vacuum level shift and the molecular dipole moment. Our findings identify recipes to fine-tune materials work functions that provide valuable insights into the interfacial engineering of this family of semiconductors.

2.
J Phys Chem Lett ; 13(28): 6439-6446, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35816174

RESUMEN

Chalcogenide perovskites have received considerable interest in the photovoltaic research community because of their stability, nontoxicity, and lead-free composition. However, because of the huge computational cost, theoretical study focusing on excitonic and polaronic properties is not explored rigorously. Herein, we capture the excitonic and polaronic effects in a series of chalcogenide perovskites ABS3, where A = Ba, Ca, Sr and B = Hf, Sn, by employing state-of-the-art hybrid density functional theory and many-body perturbative approaches, viz., GW and BSE. We find that they possess an exciton binding energy larger than that of 3D inorganic-organic hybrid perovskites. We examine the interplay of electronic and ionic contributions to the dielectric screening and conclude that the electronic contribution is dominant over the ionic contribution. Using the Feynman polaron model, polaron parameters are computed, and charge-separated polaronic states are less stable than bound excitons. Finally, the theoretically calculated spectroscopic limited maximum efficiency suggests that among all chalcogenide perovskites, CaSnS3 could serve as the best choice for photovoltaic applications.

3.
Sci Rep ; 10(1): 15372, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958786

RESUMEN

[Formula: see text] and [Formula: see text] are well known materials in the field of photocatalysis due to their exceptional electronic structure, high chemical stability, non-toxicity and low cost. However, owing to the wide band gap, these can be utilized only in the UV region. Thus, it's necessary to expand their optical response in visible region by reducing their band gap through doping with metals, nonmetals or the combination of different elements, while retaining intact the photocatalytic efficiency. We report here, the codoping of a metal and a nonmetal in anatase [Formula: see text] and [Formula: see text] for efficient photocatalytic water splitting using hybrid density functional theory and ab initio atomistic thermodynamics. The latter ensures to capture the environmental effect to understand thermodynamic stability of the charged defects at a realistic condition. We have observed that the charged defects are stable in addition to neutral defects in anatase [Formula: see text] and the codopants act as donor as well as acceptor depending on the nature of doping (p-type or n-type). However, the most stable codopants in [Formula: see text] mostly act as donor. Our results reveal that despite the response in visible light region, the codoping in [Formula: see text] and [Formula: see text] cannot always enhance the photocatalytic activity due to either the formation of recombination centers or the large shift in the conduction band minimum or valence band maximum. Amongst various metal-nonmetal combinations, [Formula: see text] (i.e. Mn is substituted at Ti site and S is substituted at O site), [Formula: see text] in anatase [Formula: see text] and [Formula: see text], [Formula: see text] in [Formula: see text] are the most potent candidates to enhance the photocatalytic efficiency of anatase [Formula: see text] and [Formula: see text] under visible light irradiation.

4.
ACS Appl Mater Interfaces ; 12(6): 7317-7325, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31933353

RESUMEN

Mixed-dimensional van der Waals nanohybrids (MvNHs) of two-dimensional transition-metal dichalcogenides (TMDs) and zero-dimensional perovskites are highly promising candidates for high-performance photonic device applications. However, the growth of perovskites over the surface of TMDs has been a challenging task due to the distinguishable surface chemistry of these two different classes of materials. Here, we demonstrate a synthetic route for the design of MoSe2-CsPbBr3 MvNHs using a bifunctional ligand, i.e., 4-aminothiophenol. Close contact between these two materials is established via a bridge that leads to the formation of a donor-bridge-acceptor system. The presence of the small conjugated ligand facilitates faster charge diffusion across MoSe2-CsPbBr3 interfaces. Density functional theory calculations confirm the type-II band alignment of the constituents within the MvNHs. The MoSe2-CsPbBr3 nanohybrids show much higher photocurrent (∼2 × 104-fold photo-to-dark current ratio) as compared to both pure CsPbBr3 nanocrystals and pristine MoSe2 nanosheets owing to the synergistic effect of pronounced light-matter interactions followed by efficient charge separation and transportation. This study suggests the use of a bifunctional ligand to construct a nanohybrid system to tune the optoelectronic properties for potential applications in photovoltaic devices.

5.
Sci Rep ; 9(1): 11427, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31388023

RESUMEN

TiO2 anatase is considered to play a significant importance in energy and environmental research. However, for developing artificial photosynthesis with TiO2, the major drawback is its large bandgap of 3.2 eV. Several non-metals have been used experimentally for extending the TiO2 photo-absorption to the visible region of the spectrum. It's therefore of paramount importance to provide theoretical guidance to experiment about the kind of defects that are thermodynamically stable at a realistic condition (e.g. Temperature (T), oxygen partial pressure ([Formula: see text]), doping). However, disentangling the relative stability of different types of defects (viz. substitution, interstitial, etc.) as a function of charge state and realistic T, [Formula: see text] is quite challenging. We report here using state-of-the-art first-principles based methodologies, the stability and meta-stability of different non-metal dopants X (X = N, C, S, Se) at various charge states and realistic conditions. The ground state electronic structure is very accurately calculated via density functional theory with hybrid functionals, whereas the finite T and [Formula: see text] effects are captured by ab initio atomistic thermodynamics under harmonic approximations. On comparing the defect formation energies at a given T and [Formula: see text] (relevant to the experiment), we have found that Se interstitial defect (with two hole trapped) is energetically most favored in the p-type region, whereas N substitution (with one electron trapped) is the most abundant defect in the n-type region to provide visible region photo-absorption in TiO2. Our finding validates that the most stable defects in X doped TiO2 are not the neutral defects but the charged defects. The extra stability of [Formula: see text] is carefully analyzed by comparing the individual effect of bond-making/breaking and the charge carrier trapping energies.

6.
J Phys Chem Lett ; 10(17): 5173-5181, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31415179

RESUMEN

Lead-free double perovskite materials, A2M(I)M'(III)X6, have recently attracted attention as environment-friendly alternatives to lead-based perovskites, APbX3, because of both rich fundamental science and potential applications. We report band gap tuning via alloying of Cs2AgBiCl6 nanocrystals (NCs) with nontoxic, abundant Na. It results in a series of Cs2NaxAg1-xBiCl6 (x = 0, 0.25, 0.5, 0.75, and 1) double perovskite NCs, leading to increase in optical band gap from 3.39 eV (x = 0) to 3.82 eV (x = 1) and 30-fold increment in weak photoluminescence. The tuning of band gap has been further explored by electronic structure calculation under the framework of density functional theory (DFT). The latter confirms that the increase in band gap is due to reduction of Ag contribution near valence band maxima (VBM) on incorporation of Na ion in place of Ag. These alloyed double perovskites can have useful potential applications in optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA