Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37455360

RESUMEN

The role of neuromodulators in the cerebellum is not well understood. In particular, the behavioural significance of the cholinergic system in the cerebellum is unknown. To investigate the importance of cerebellar cholinergic signalling in behaviour, we infused acetylcholine receptor antagonists, scopolamine and mecamylamine, bilaterally into the rat cerebellum (centred on interpositus nucleus) and observed the motor effects through a battery of behavioural tests. These tests included unrewarded behaviour during open field exploration and a horizontal ladder walking task and reward-based beam walking and pellet reaching tasks. Infusion of a mix of the antagonists did not impair motor learning in the horizontal ladder walking or the reaching task but reduced spontaneous movement during open field exploration, impaired coordination during beam walking and ladder walking, led to fewer reaches in the pellet reaching task, slowed goal-directed reaching behaviour and reduced reward pellet consumption in a free access to food task. Infusion of the muscarinic antagonist scopolamine on its own resulted in deficits in motor performance and a reduction in the number of reward pellets consumed in the free access to food task. By contrast, infusion of the nicotinic antagonist mecamylamine on its own had no significant effect on any task, except beam walking traversal time, which was reduced. Together, these data suggest that acetylcholine in the cerebellar interpositus nucleus is important for the execution and coordination of voluntary movements mainly via muscarinic receptor signalling, especially in relation to reward-related behaviour.

2.
Hippocampus ; 33(6): 730-744, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36971428

RESUMEN

Pyramidal cells in hippocampal area CA2 have synaptic properties that are distinct from the other CA subregions. Notably, this includes a lack of typical long-term potentiation of stratum radiatum synapses. CA2 neurons express high levels of several known and potential regulators of metabotropic glutamate receptor (mGluR)-dependent signaling including Striatal-Enriched Tyrosine Phosphatase (STEP) and several Regulator of G-protein Signaling (RGS) proteins, yet the functions of these proteins in regulating mGluR-dependent synaptic plasticity in CA2 are completely unknown. Thus, the aim of this study was to examine mGluR-dependent synaptic depression and to determine whether STEP and the RGS proteins RGS4 and RGS14 are involved. Using whole cell voltage-clamp recordings from mouse pyramidal cells, we found that mGluR agonist-induced long-term depression (mGluR-LTD) is more pronounced in CA2 compared with that observed in CA1. This mGluR-LTD in CA2 was found to be protein synthesis and STEP dependent, suggesting that CA2 mGluR-LTD shares mechanistic processes with those seen in CA1, but in addition, RGS14, but not RGS4, was essential for mGluR-LTD in CA2. In addition, we found that exogenous application of STEP could rescue mGluR-LTD in RGS14 KO slices. Supporting a role for CA2 synaptic plasticity in social cognition, we found that RGS14 KO mice had impaired social recognition memory as assessed in a social discrimination task. These results highlight possible roles for mGluRs, RGS14, and STEP in CA2-dependent behaviors, perhaps by biasing the dominant form of synaptic plasticity away from LTP and toward LTD in CA2.


Asunto(s)
Proteínas RGS , Receptores de Glutamato Metabotrópico , Animales , Ratones , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Plasticidad Neuronal , Células Piramidales/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo
3.
Cerebellum ; 22(5): 1002-1019, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36121552

RESUMEN

Given the importance of the cerebellum in controlling movements, it might be expected that its main role in eating would be the control of motor elements such as chewing and swallowing. Whilst such functions are clearly important, there is more to eating than these actions, and more to the cerebellum than motor control. This review will present evidence that the cerebellum contributes to homeostatic, motor, rewarding and affective aspects of food consumption.Prediction and feedback underlie many elements of eating, as food consumption is influenced by expectation. For example, circadian clocks cause hunger in anticipation of a meal, and food consumption causes feedback signals which induce satiety. Similarly, the sight and smell of food generate an expectation of what that food will taste like, and its actual taste will generate an internal reward value which will be compared to that expectation. Cerebellar learning is widely thought to involve feed-forward predictions to compare expected outcomes to sensory feedback. We therefore propose that the overarching role of the cerebellum in eating is to respond to prediction errors arising across the homeostatic, motor, cognitive, and affective domains.


Asunto(s)
Conducta Alimentaria , Hambre , Saciedad , Cerebelo , Aprendizaje , Ingestión de Alimentos
4.
Neurobiol Dis ; 163: 105597, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34954053

RESUMEN

Biallelic loss-of-function NSUN2 mutations have recently been associated with cases of Autism Spectrum Condition (ASC), and NSun2-deficiency was also previously shown to cause a severe autosomal recessive intellectually disability disorder syndrome in which patients can sometimes display autistic behaviour. It has been demonstrated that NSUN2 can control protein synthesis rates via direct regulation of RNA methylation, and it is therefore of interest that other studies have suggested protein synthesis-dependent synaptic plasticity dysregulation as a mechanism for learning difficulties in various other autism-expressing conditions and disorders. Here we investigated NMDAR-LTP in a murine transgenic model harbouring loss-of-function mutation in the NSun2 gene and find an impairment of a protein synthesis-dependent form of this synaptic plasticity pathway. Our findings support the idea that NMDAR-LTP mis-regulation may represent a previously underappreciated mechanism associated with autism phenotypes.


Asunto(s)
Trastorno del Espectro Autista/genética , Hipocampo/metabolismo , Potenciación a Largo Plazo/genética , Metiltransferasas/genética , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Trastorno del Espectro Autista/metabolismo , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Metiltransferasas/metabolismo , Ratones , Ratones Transgénicos , Mutación
5.
iScience ; 24(9): 103029, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34553130

RESUMEN

It is well established that long-term depression (LTD) can be initiated by either NMDA or mGluR activation. Here we report that sustained activation of GluK2 subunit-containing kainate receptors (KARs) leads to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) endocytosis and induces LTD of AMPARs (KAR-LTDAMPAR) in hippocampal neurons. The KAR-evoked loss of surface AMPARs is blocked by the ionotropic KAR inhibitor UBP 310 indicating that KAR-LTDAMPAR requires KAR channel activity. Interestingly, however, blockade of PKC or PKA also reduces GluA2 surface expression and occludes the effect of KAR activation. In acute hippocampal slices, kainate application caused a significant loss of GluA2-containing AMPARs from synapses and long-lasting depression of AMPAR excitatory postsynaptic currents in CA1. These data, together with our previously reported KAR-LTPAMPAR, demonstrate that KARs can bidirectionally regulate synaptic AMPARs and synaptic plasticity via different signaling pathways.

6.
Cereb Cortex Commun ; 2(2): tgab029, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34296174

RESUMEN

The nucleus reuniens and rhomboid nuclei of the thalamus (ReRh) are reciprocally connected to a range of higher order cortices including hippocampus (HPC) and medial prefrontal cortex (mPFC). The physiological function of ReRh is well predicted by requirement for interactions between mPFC and HPC, including associative recognition memory, spatial navigation, and working memory. Although anatomical and electrophysiological evidence suggests ReRh makes excitatory synapses in mPFC there is little data on the physiological properties of these projections, or whether ReRh and HPC target overlapping cell populations and, if so, how they interact. We demonstrate in ex vivo mPFC slices that ReRh and HPC afferent inputs converge onto more than two-thirds of layer 5 pyramidal neurons, show that ReRh, but not HPC, undergoes marked short-term plasticity during theta frequency transmission, and that HPC, but not ReRh, afferents are subject to neuromodulation by acetylcholine acting via muscarinic receptor M2. Finally, we demonstrate that pairing HPC followed by ReRh (but not pairing ReRh followed by HPC) at theta frequency induces associative, NMDA receptor dependent synaptic plasticity in both inputs to mPFC. These data provide vital physiological phenotypes of the synapses of this circuit and provide a novel mechanism for HPC-ReRh-mPFC encoding.

7.
Elife ; 102021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34251337

RESUMEN

The endosome-associated cargo adaptor sorting nexin-27 (SNX27) is linked to various neuropathologies through sorting of integral proteins to the synaptic surface, most notably AMPA receptors. To provide a broader view of SNX27-associated pathologies, we performed proteomics in rat primary neurons to identify SNX27-dependent cargoes, and identified proteins linked to excitotoxicity, epilepsy, intellectual disabilities, and working memory deficits. Focusing on the synaptic adhesion molecule LRFN2, we established that SNX27 binds to LRFN2 and regulates its endosomal sorting. Furthermore, LRFN2 associates with AMPA receptors and knockdown of LRFN2 results in decreased surface AMPA receptor expression, reduced synaptic activity, and attenuated hippocampal long-term potentiation. Overall, our study provides an additional mechanism by which SNX27 can control AMPA receptor-mediated synaptic transmission and plasticity indirectly through the sorting of LRFN2 and offers molecular insight into the perturbed function of SNX27 and LRFN2 in a range of neurological conditions.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Nexinas de Clasificación/metabolismo , Animales , Endosomas/metabolismo , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo , Trastornos de la Memoria/metabolismo , Transporte de Proteínas , Proteómica/métodos , Ratas , Transmisión Sináptica
8.
Neuropharmacology ; 192: 108614, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34022178

RESUMEN

In this review we consider the various roles played by N-methyl-d-aspartate receptors (NMDARs) located on pyramidal neurones in medial prefrontal cortex (mPFC). We focus on recent data from our lab that has investigated how NMDARs contribute to ongoing synaptic transmission in a frequency dependent manner, the plasticity of NMDARs and how this impacts their contribution to synaptic transmission, and finally consider how NMDARs contribute to plasticity induced by synchronous activation of two separate inputs to mPFC.


Asunto(s)
Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Corteza Prefrontal/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/fisiología , Animales , Humanos
9.
Cell Rep ; 22(13): 3409-3415, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29590611

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) expressed in the medial prefrontal cortex have critical roles in cognitive function. However, whether nAChRs are required for associative recognition memory and the mechanisms by which nAChRs may contribute to mnemonic processing are not known. We demonstrate that nAChRs in the prefrontal cortex exhibit subtype-specific roles in associative memory encoding and retrieval. We present evidence that these separate roles of nAChRs may rely on bidirectional modulation of plasticity at synaptic inputs to the prefrontal cortex that are essential for associative recognition memory.


Asunto(s)
Aprendizaje por Asociación/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Corteza Prefrontal/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Masculino , Ratas , Receptores AMPA/metabolismo
10.
Nat Neurosci ; 20(2): 242-250, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28067902

RESUMEN

Episodic memory formation depends on information about a stimulus being integrated within a precise spatial and temporal context, a process dependent on the hippocampus and prefrontal cortex. Investigations of putative functional interactions between these regions are complicated by multiple direct and indirect hippocampal-prefrontal connections. Here application of a pharmacogenetic deactivation technique enabled us to investigate the mnemonic contributions of two direct hippocampal-medial prefrontal cortex (mPFC) pathways, one arising in the dorsal CA1 (dCA1) and the other in the intermediate CA1 (iCA1). While deactivation of either pathway impaired episodic memory, the resulting pattern of mnemonic deficits was different: deactivation of the dCA1→mPFC pathway selectively disrupted temporal order judgments while iCA1→mPFC pathway deactivation disrupted spatial memory. These findings reveal a previously unsuspected division of function among CA1 neurons that project directly to the mPFC. Such subnetworks may enable the distinctiveness of contextual information to be maintained in an episodic memory circuit.


Asunto(s)
Hipocampo/fisiología , Memoria Episódica , Vías Nerviosas/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Animales , Masculino , Red Nerviosa/fisiología , Ratas , Memoria Espacial/fisiología
11.
Front Cell Neurosci ; 9: 420, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26582006

RESUMEN

The application of next-generation-sequencing based methods has recently allowed the sequence-specific occurrence of RNA modifications to be investigated in transcriptome-wide settings. This has led to the emergence of a new field of molecular genetics research termed "epitranscriptomics." Investigations have shown that these modifications can exert control over protein synthesis via various mechanisms, and particularly when occurring on messenger RNAs, can be dynamically regulated. Here, we propose that RNA modifications may be a critical regulator over the spatiotemporal control of protein-synthesis in neurons, which is supported by our finding that the RNA methylase NSun2 colocalizes with the translational-repressor FMRP at neuronal dendrites. We also observe that NSun2 commonly methylates mRNAs which encode components of the postsynaptic proteome, and further find that NSun2 and FMRP likely share a common subset of mRNA targets which include those that are known to be translated at dendrites in an activity-dependent manner. We consider potential roles for RNA modifications in space- time- and activity-dependent regulation of protein synthesis in neuronal physiology, with a particular focus on synaptic plasticity modulation.

12.
eNeuro ; 2(1)2015.
Artículo en Inglés | MEDLINE | ID: mdl-26464970

RESUMEN

Visual recognition memory relies on long-term depression-like mechanisms within the perirhinal cortex and the activation of the lateral amygdala can enhance visual recognition memory. How the lateral amygdala regulates recognition memory is not known, but synaptic plasticity at amygdala-perirhinal synapses may provide a mechanism for the emotional enhancement of recognition memory. In this study, we investigate the mechanisms of long-term depression (LTD) at the amygdala-perirhinal synapse in male Lister Hooded rats. We demonstrate that LTD at this input relies on NR2A-containing NMDARs, located presynaptically. Therefore, the underlying mechanisms of LTD, at the amygdala-perirhinal input, which may regulate the emotional context for recognition memory, are different to previously described postsynaptic NR2B-NMDAR mechanisms of intraperirhinal LTD that subserve recognition memory.

13.
Learn Mem ; 22(2): 69-73, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25593292

RESUMEN

Object-in-place (OiP) memory is critical for remembering the location in which an object was last encountered and depends conjointly on the medial prefrontal cortex, perirhinal cortex, and hippocampus. Here we examined the role of dopamine D1/D5 receptor neurotransmission within these brain regions for OiP memory. Bilateral infusion of D1/D5 receptor antagonists SCH23390 or SKF83566 into the medial prefrontal cortex, prior to memory acquisition, impaired OiP performance following a 5 min or 1 h delay. Retrieval was unaffected. Intraperirhinal or intrahippocampal infusions of SCH23390 had no effect. These results reveal a selective role for D1/D5 receptors in the mPFC during OiP memory encoding.


Asunto(s)
Aprendizaje por Asociación/fisiología , Corteza Prefrontal/fisiología , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D5/fisiología , Reconocimiento en Psicología/fisiología , Memoria Espacial/fisiología , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/análogos & derivados , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Animales , Aprendizaje por Asociación/efectos de los fármacos , Benzazepinas/farmacología , Antagonistas de Dopamina/farmacología , Masculino , Corteza Prefrontal/efectos de los fármacos , Ratas , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D5/antagonistas & inhibidores , Reconocimiento en Psicología/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
14.
J Neurosci ; 34(36): 12223-9, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25186764

RESUMEN

Hippocampal CA1 pyramidal neurons receive inputs from entorhinal cortex directly via the temporoammonic (TA) pathway and indirectly via the Schaffer collateral (SC) pathway from CA3. NMDARs at synapses of both pathways are critical for the induction of synaptic plasticity, information processing, and learning and memory. We now demonstrate that, in the rat hippocampus, activity-dependent mGlu1 receptor-mediated LTD (mGlu1-LTD) of NMDAR-mediated transmission (EPSC(NMDA)) at the SC-CA1 input prevents subsequent LTP of AMPAR-mediated transmission. In contrast, there was no activity-dependent mGlu1-LTD of EPSC(NMDA) at the TA-CA1 pathway, or effects on subsequent plasticity of AMPAR-mediated transmission. Therefore, the two major pathways delivering information to CA1 pyramidal neurons are subject to very different plasticity rules.


Asunto(s)
Región CA1 Hipocampal/fisiología , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Células Piramidales/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Células Cultivadas , Potenciales Postsinápticos Excitadores , Masculino , Especificidad de Órganos , Células Piramidales/metabolismo , Ratas , Ratas Wistar , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología
15.
J Physiol ; 591(16): 3963-79, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23671159

RESUMEN

Synaptic plasticity in perirhinal cortex is essential for recognition memory. Nitric oxide and endocannabinoids (eCBs), which are produced in the postsynaptic cell and act on the presynaptic terminal, are implicated in mechanisms of long-term potentiation (LTP) and long-term depression (LTD) in other brain regions. In this study, we examine these two retrograde signalling cascades in perirhinal cortex synaptic plasticity and in visual recognition memory in the rat. We show that inhibition of NO-dependent signalling prevented both carbachol- and activity (5 Hz)-dependent LTD but not activity (100 Hz theta burst)-dependent LTP in the rat perirhinal cortex in vitro. In contrast, inhibition of the eCB-dependent signalling prevented LTP but not the two forms of LTD in vitro. Local administration into perirhinal cortex of the nitric oxide synthase inhibitor NPA (2 µm) disrupted acquisition of long-term visual recognition memory. In contrast, AM251 (10 µm), a cannabinoid receptor 1 antagonist, did not impair visual recognition memory. The results of this study demonstrate dissociation between putative retrograde signalling mechanisms in LTD and LTP in perirhinal cortex. Thus, LTP relies on cannabinoid but not NO signalling, whilst LTD relies on NO- but not eCB-dependent signalling. Critically, these results also establish, for the first time, that NO- but not eCB-dependent signalling is important in perirhinal cortex-dependent visual recognition memory.


Asunto(s)
Depresión Sináptica a Largo Plazo/fisiología , Óxido Nítrico/fisiología , Reconocimiento en Psicología/fisiología , Percepción Visual/fisiología , Animales , Antagonistas de Receptores de Cannabinoides/farmacología , Endocannabinoides/fisiología , Técnicas In Vitro , Masculino , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Ratas Endogámicas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/antagonistas & inhibidores , Lóbulo Temporal/fisiología
16.
Neuropharmacology ; 66: 143-50, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23357951

RESUMEN

Synaptic transmission is essential for early development of the central nervous system. However, the mechanisms that regulate early synaptic transmission in the cerebral cortex are unclear. PKMζ is a kinase essential for the maintenance of LTP. We show for the first time that inhibition of PKMζ produces a profound depression of basal synaptic transmission in neonatal, but not adult, rat perirhinal cortex. This suggests that synapses in early development are in a constitutive LTP-like state. Furthermore, basal synaptic transmission in immature, but not mature, perirhinal cortex relies on persistent activity of metabotropic glutamate (mGlu) receptor, PI3Kinase and mammalian target of rapamycin (mTOR). Thus early in development, cortical synapses exist in an LTP-like state maintained by tonically active mGlu receptor-, mTOR- and PKMζ- dependent cascades. These results provide new understanding of the molecular mechanisms that control synapses during development and may aid our understanding of developmental disorders such as autism and schizophrenia. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.


Asunto(s)
Proteína Quinasa C/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Transmisión Sináptica/fisiología , Lóbulo Temporal/fisiología , Animales , Animales Recién Nacidos , Potenciación a Largo Plazo/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/biosíntesis , Ratas , Transducción de Señal/fisiología , Transmisión Sináptica/efectos de los fármacos , Serina-Treonina Quinasas TOR/fisiología , Lóbulo Temporal/crecimiento & desarrollo , Lóbulo Temporal/metabolismo
17.
Eur J Neurosci ; 37(6): 850-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23294136

RESUMEN

Traditionally, neurotransmitters are associated with a fast, or phasic, type of action on neurons in the central nervous system (CNS). However, accumulating evidence indicates that γ-aminobutyric acid (GABA) and glutamate can also have a continual, or tonic, influence on these cells. Here, in voltage- and current-clamp recordings in rat brain slices, we identify three types of tonically active receptors in a single CNS structure, the thalamic reticular nucleus (TRN). Thus, TRN contains constitutively active GABAA receptors (GABAA Rs), which are located on TRN neurons and generate a persistent outward Cl(-) current. When TRN neurons are depolarized, blockade of this current increases their action potential output in response to current injection. Furthermore, TRN contains tonically active GluN2B-containing N-methyl-D-aspartate receptors (NMDARs). These are located on reticuloreticular GABAergic terminals in TRN and generate a persistent facilitation of vesicular GABA release from these terminals. In addition, TRN contains tonically active metabotropic glutamate type 2 receptors (mGlu2Rs). These are located on glutamatergic cortical terminals in TRN and generate a persistent reduction of vesicular glutamate release from these terminals. Although tonically active GABAA Rs, NMDARs and mGlu2Rs operate through different mechanisms, we propose that the continual and combined activity of these three receptor types ultimately serves to hyperpolarize TRN neurons, which will differentially affect the output of these cells depending upon the current state of their membrane potential. Thus, when TRN cells are relatively depolarized, their firing in single-spike tonic mode will be reduced, whereas when these cells are relatively hyperpolarized, their ability to fire in multispike burst mode will be facilitated.


Asunto(s)
Potenciales de Acción , Núcleos Talámicos Intralaminares/fisiología , Receptores de GABA-A/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Cloruros/metabolismo , Ácido Glutámico/metabolismo , Núcleos Talámicos Intralaminares/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Ratas , Ratas Wistar , Vías Secretoras , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiología , Ácido gamma-Aminobutírico/metabolismo
18.
Eur J Neurosci ; 36(7): 2941-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22845676

RESUMEN

Evidence suggests that the acquisition of recognition memory depends upon CREB-dependent long-lasting changes in synaptic plasticity in the perirhinal cortex.The CREB-responsive microRNA miR-132 has been shown to regulate synaptic transmission and we set out to investigate a role for this microRNA in recognition memory and its underlying plasticity mechanisms. To this end we mediated the specific overexpression of miR-132 selectively in the rat perirhinal cortex and demonstrated impairment in short-term recognition memory. This functional deficit was associated with a reduction in both long-term depression and long-term potentiation. These results confirm that microRNAs are key coordinators of the intracellular pathways that mediate experience-dependent changes in the brain. In addition, these results demonstrate a role for miR-132 in the neuronal mechanisms underlying the formation of short-term recognition memory.


Asunto(s)
Corteza Cerebral/fisiología , Regulación de la Expresión Génica , Potenciación a Largo Plazo/genética , Memoria a Corto Plazo/fisiología , MicroARNs/metabolismo , Reconocimiento en Psicología/fisiología , Animales , Corteza Cerebral/metabolismo , Potenciales Postsinápticos Excitadores , Células HeLa , Humanos , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Masculino , MicroARNs/genética , Ratas , Ratas Wistar
19.
Eur J Neurosci ; 36(4): 2421-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22616722

RESUMEN

Emotionally salient experiences are better remembered than events that have little emotional context. Several lines of evidence indicate that the amygdala plays an important role in this emotional enhancement of memory. Visual recognition memory relies on synaptic plasticity in the perirhinal cortex, but little is known about the mechanisms involved in emotional enhancement of this form of memory. The results of the present study, performed in rat brain slices, show for the first time that the amygdala input to the perirhinal cortex undergoes synaptic plasticity. Stimulation in the amygdala resulted in long-term potentiation (LTP) in perirhinal cortex that was dependent on ß-adrenoceptors and L-type voltage-dependent calcium channels (L-VDCCs) but was NMDAR-independent. In contrast, intracortical perirhinal stimulation resulted in LTP that was NMDAR-dependent but ß-adrenoceptor- and L-VDCC-independent. In addition, the present results provide the first evidence that stimulation of the amygdala can reduce the threshold for LTP in the perirhinal cortex. Interestingly, this associative form of LTP requires ß-adrenoceptor activation but not NMDA or L-VDCC activation. Knowing the mechanisms that control amygdala-perirhinal cortex interactions will allow better understanding of how emotionally charged visual events are remembered, and may help to understand how memories can consolidate and become intrusive in anxiety-related disorders.


Asunto(s)
Amígdala del Cerebelo/fisiología , Corteza Cerebral/fisiología , Potenciación a Largo Plazo/fisiología , Percepción Visual/fisiología , Animales , Canales de Calcio Tipo L/fisiología , Emociones/fisiología , Masculino , Memoria , Ratas , Ratas Endogámicas , Receptores Adrenérgicos beta/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Reconocimiento en Psicología/fisiología
20.
J Neurosci ; 31(50): 18464-78, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22171048

RESUMEN

The medial prefrontal cortex (mPFC) forms part of a neural circuit involved in the formation of lasting associations between objects and places. Cholinergic inputs from the basal forebrain innervate the mPFC and may modulate synaptic processes required for the formation of object-in-place memories. To investigate whether acetylcholine regulates synaptic function in the rat mPFC, whole-cell voltage-clamp recordings were made from pyramidal neurons in layer V. Bath application of the cholinergic agonist carbachol caused a potent and long-term depression (LTD) of synaptic responses that was blocked by the muscarinic receptor antagonist scopolamine and was mimicked, in part, by the M(1) receptor agonists McN-A-343 or AF102B. Furthermore, inhibition of PKC blocked carbachol-mediated LTD. We next determined the requirements for activity-dependent LTD in the prefrontal cortex. Synaptic stimulation that was subthreshold for producing LTD did, however, result in LTD when acetylcholine levels were enhanced by inhibition of acetylcholinesterase or when delivered in the presence of the M(1)-selective positive allosteric modulator BQCA. Increasing the levels of synaptic stimulation resulted in M(1) receptor-dependent LTD without the need for pharmacological manipulation of acetylcholine levels. These results show that synaptic stimulation of muscarinic receptors alone can be critical for plastic changes in excitatory synaptic transmission in the mPFC. In turn, these muscarinic mediated events may be important in the formation of object-in-place memories. A loss of basal forebrain cholinergic neurons is a classic hallmark of Alzheimer's dementia and our results provide a potential explanation for the loss of memory associated with the disease.


Asunto(s)
Depresión Sináptica a Largo Plazo/fisiología , Corteza Prefrontal/fisiología , Células Piramidales/fisiología , Receptores Muscarínicos/metabolismo , Animales , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Ratas , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...