Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 21(1): 342, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221626

RESUMEN

The Swedish Childhood Tumor Biobank (BTB) is a nonprofit national infrastructure for collecting tissue samples and genomic data from pediatric patients diagnosed with central nervous system (CNS) and other solid tumors. The BTB is built on a multidisciplinary network established to provide the scientific community with standardized biospecimens and genomic data, thereby improving knowledge of the biology, treatment and outcome of childhood tumors. As of 2022, over 1100 fresh-frozen tumor samples are available for researchers. We present the workflow of the BTB from sample collection and processing to the generation of genomic data and services offered. To determine the research and clinical utility of the data, we performed bioinformatics analyses on next-generation sequencing (NGS) data obtained from a subset of 82 brain tumors and patient blood-derived DNA combined with methylation profiling to enhance the diagnostic accuracy and identified germline and somatic alterations with potential biological or clinical significance. The BTB procedures for collection, processing, sequencing, and bioinformatics deliver high-quality data. We observed that the findings could impact patient management by confirming or clarifying the diagnosis in 79 of the 82 tumors and detecting known or likely driver mutations in 68 of 79 patients. In addition to revealing known mutations in a broad spectrum of genes implicated in pediatric cancer, we discovered numerous alterations that may represent novel driver events and specific tumor entities. In summary, these examples reveal the power of NGS to identify a wide number of actionable gene alterations. Making the power of NGS available in healthcare is a challenging task requiring the integration of the work of clinical specialists and cancer biologists; this approach requires a dedicated infrastructure, as exemplified here by the BTB.


Asunto(s)
Bancos de Muestras Biológicas , Neoplasias Encefálicas , Humanos , Niño , Suecia , Sistema Nervioso Central , Genómica
2.
Nature ; 608(7922): 360-367, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948708

RESUMEN

Defining the transition from benign to malignant tissue is fundamental to improving early diagnosis of cancer1. Here we use a systematic approach to study spatial genome integrity in situ and describe previously unidentified clonal relationships. We used spatially resolved transcriptomics2 to infer spatial copy number variations in >120,000 regions across multiple organs, in benign and malignant tissues. We demonstrate that genome-wide copy number variation reveals distinct clonal patterns within tumours and in nearby benign tissue using an organ-wide approach focused on the prostate. Our results suggest a model for how genomic instability arises in histologically benign tissue that may represent early events in cancer evolution. We highlight the power of capturing the molecular and spatial continuums in a tissue context and challenge the rationale for treatment paradigms, including focal therapy.


Asunto(s)
Células Clonales , Variaciones en el Número de Copia de ADN , Inestabilidad Genómica , Neoplasias , Análisis Espacial , Células Clonales/metabolismo , Células Clonales/patología , Variaciones en el Número de Copia de ADN/genética , Detección Precoz del Cáncer , Genoma Humano , Inestabilidad Genómica/genética , Genómica , Humanos , Masculino , Modelos Biológicos , Neoplasias/genética , Neoplasias/patología , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transcriptoma/genética
3.
Commun Biol ; 4(1): 57, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420318

RESUMEN

The RNA integrity number (RIN) is a frequently used quality metric to assess the completeness of rRNA, as a proxy for the corresponding mRNA in a tissue. Current methods operate at bulk resolution and provide a single average estimate for the whole sample. Spatial transcriptomics technologies have emerged and shown their value by placing gene expression into a tissue context, resulting in transcriptional information from all tissue regions. Thus, the ability to estimate RNA quality in situ has become of utmost importance to overcome the limitation with a bulk rRNA measurement. Here we show a new tool, the spatial RNA integrity number (sRIN) assay, to assess the rRNA completeness in a tissue wide manner at cellular resolution. We demonstrate the use of sRIN to identify spatial variation in tissue quality prior to more comprehensive spatial transcriptomics workflows.


Asunto(s)
ARN Mensajero/análisis , Análisis Espacial , Transcriptoma , Línea Celular Tumoral , Humanos
4.
PLoS One ; 7(10): e47353, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23110069

RESUMEN

Drug toxicity observed in animal studies during drug development accounts for the discontinuation of many drug candidates, with the kidney being a major site of tissue damage. Extensive investigations are often required to reveal the mechanisms underlying such toxicological events and in the case of crystalline deposits the chemical composition can be problematic to determine. In the present study, we have used mass spectrometry imaging combined with a set of advanced analytical techniques to characterize such crystalline deposits in situ. Two potential microsomal prostaglandin E synthase 1 inhibitors, with similar chemical structure, were administered to rats over a seven day period. This resulted in kidney damage with marked tubular degeneration/regeneration and crystal deposits within the tissue that was detected by histopathology. Results from direct tissue section analysis by matrix-assisted laser desorption ionization mass spectrometry imaging were combined with data obtained following manual crystal dissection analyzed by liquid chromatography mass spectrometry and nuclear magnetic resonance spectroscopy. The chemical composition of the crystal deposits was successfully identified as a common metabolite, bisulphonamide, of the two drug candidates. In addition, an un-targeted analysis revealed molecular changes in the kidney that were specifically associated with the area of the tissue defined as pathologically damaged. In the presented study, we show the usefulness of combining mass spectrometry imaging with an array of powerful analytical tools to solve complex toxicological problems occurring during drug development.


Asunto(s)
Riñón/metabolismo , Espectrometría de Masas/métodos , Animales , Cromatografía Liquida , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Femenino , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Espectroscopía de Resonancia Magnética , Prostaglandina-E Sintasas , Ratas , Toxicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA