Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Biotechnol ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714897

RESUMEN

A central challenge in developing personalized cancer cell immunotherapy is the identification of tumor-reactive T cell receptors (TCRs). By exploiting the distinct transcriptomic profile of tumor-reactive T cells relative to bystander cells, we build and benchmark TRTpred, an antigen-agnostic in silico predictor of tumor-reactive TCRs. We integrate TRTpred with an avidity predictor to derive a combinatorial algorithm of clinically relevant TCRs for personalized T cell therapy and benchmark it in patient-derived xenografts.

3.
Nat Commun ; 15(1): 2357, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490980

RESUMEN

Circular RNAs (circRNAs) are covalently closed non-coding RNAs lacking the 5' cap and the poly-A tail. Nevertheless, it has been demonstrated that certain circRNAs can undergo active translation. Therefore, aberrantly expressed circRNAs in human cancers could be an unexplored source of tumor-specific antigens, potentially mediating anti-tumor T cell responses. This study presents an immunopeptidomics workflow with a specific focus on generating a circRNA-specific protein fasta reference. The main goal of this workflow is to streamline the process of identifying and validating human leukocyte antigen (HLA) bound peptides potentially originating from circRNAs. We increase the analytical stringency of our workflow by retaining peptides identified independently by two mass spectrometry search engines and/or by applying a group-specific FDR for canonical-derived and circRNA-derived peptides. A subset of circRNA-derived peptides specifically encoded by the region spanning the back-splice junction (BSJ) are validated with targeted MS, and with direct Sanger sequencing of the respective source transcripts. Our workflow identifies 54 unique BSJ-spanning circRNA-derived peptides in the immunopeptidome of melanoma and lung cancer samples. Our approach enlarges the catalog of source proteins that can be explored for immunotherapy.


Asunto(s)
Péptidos , ARN Circular , Humanos , ARN Circular/metabolismo , ARN Mensajero , Antígenos de Histocompatibilidad Clase I
4.
Sci Immunol ; 9(92): eadg7995, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306416

RESUMEN

Adoptive cell therapy (ACT) using ex vivo-expanded tumor-infiltrating lymphocytes (TILs) can eliminate or shrink metastatic melanoma, but its long-term efficacy remains limited to a fraction of patients. Using longitudinal samples from 13 patients with metastatic melanoma treated with TIL-ACT in a phase 1 clinical study, we interrogated cellular states within the tumor microenvironment (TME) and their interactions. We performed bulk and single-cell RNA sequencing, whole-exome sequencing, and spatial proteomic analyses in pre- and post-ACT tumor tissues, finding that ACT responders exhibited higher basal tumor cell-intrinsic immunogenicity and mutational burden. Compared with nonresponders, CD8+ TILs exhibited increased cytotoxicity, exhaustion, and costimulation, whereas myeloid cells had increased type I interferon signaling in responders. Cell-cell interaction prediction analyses corroborated by spatial neighborhood analyses revealed that responders had rich baseline intratumoral and stromal tumor-reactive T cell networks with activated myeloid populations. Successful TIL-ACT therapy further reprogrammed the myeloid compartment and increased TIL-myeloid networks. Our systematic target discovery study identifies potential T-myeloid cell network-based biomarkers that could improve patient selection and guide the design of ACT clinical trials.


Asunto(s)
Inmunoterapia Adoptiva , Melanoma , Humanos , Melanoma/genética , Linfocitos Infiltrantes de Tumor/metabolismo , Proteómica , Linfocitos T CD8-positivos/metabolismo , Microambiente Tumoral
5.
Cancer Res ; 84(6): 808-826, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38345497

RESUMEN

Heterochromatin loss and genetic instability enhance cancer progression by favoring clonal diversity, yet uncontrolled replicative stress leads to mitotic catastrophe and inflammatory responses that promote immune rejection. KRAB domain-containing zinc finger proteins (KZFP) contribute to heterochromatin maintenance at transposable elements (TE). Here, we identified an association of upregulation of a cluster of primate-specific KZFPs with poor prognosis, increased copy-number alterations, and changes in the tumor microenvironment in diffuse large B-cell lymphoma (DLBCL). Depleting two of these KZFPs targeting evolutionarily recent TEs, ZNF587 and ZNF417, impaired the proliferation of cells derived from DLBCL and several other tumor types. ZNF587 and ZNF417 depletion led to heterochromatin redistribution, replicative stress, and cGAS-STING-mediated induction of an interferon/inflammatory response, which enhanced susceptibility to macrophage-mediated phagocytosis and increased surface expression of HLA-I, together with presentation of a neoimmunopeptidome. Thus, cancer cells can exploit KZFPs to dampen TE-originating surveillance mechanisms, which likely facilitates clonal expansion, diversification, and immune evasion. SIGNIFICANCE: Upregulation of a cluster of primate-specific KRAB zinc finger proteins in cancer cells prevents replicative stress and inflammation by regulating heterochromatin maintenance, which could facilitate the development of improved biomarkers and treatments.


Asunto(s)
Heterocromatina , Neoplasias , Animales , Heterocromatina/genética , Dedos de Zinc/genética , Elementos Transponibles de ADN , Primates/genética , Inflamación/genética , Neoplasias/genética
6.
Science ; 382(6676): 1270-1276, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38096385

RESUMEN

Current HIV vaccines designed to stimulate CD8+ T cells have failed to induce immunologic control upon infection. The functions of vaccine-induced HIV-specific CD8+ T cells were investigated here in detail. Cytotoxic capacity was significantly lower than in HIV controllers and was not a consequence of low frequency or unaccumulated functional cytotoxic proteins. Low cytotoxic capacity was attributable to impaired degranulation in response to the low antigen levels present on HIV-infected targets. The vaccine-induced T cell receptor (TCR) repertoire was polyclonal and transduction of these TCRs conferred the same reduced functions. These results define a mechanism accounting for poor antiviral activity induced by these vaccines and suggest that an effective CD8+ T cell response may require a vaccination strategy that drives further TCR clonal selection.


Asunto(s)
Vacunas contra el SIDA , Degranulación de la Célula , Citotoxicidad Inmunológica , Infecciones por VIH , Linfocitos T Citotóxicos , Humanos , Vacunas contra el SIDA/inmunología , Células Clonales , Infecciones por VIH/prevención & control , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Citotóxicos/inmunología , Degranulación de la Célula/inmunología
7.
Cancer Res Commun ; 3(11): 2345-2357, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37991387

RESUMEN

IFNγ alters the immunopeptidome presented on HLA class I (HLA-I), and its activity on cancer cells is known to be important for effective immunotherapy responses. We performed proteomic analyses of untreated and IFNγ-treated colorectal cancer patient-derived organoids and combined this with transcriptomic and HLA-I immunopeptidomics data to dissect mechanisms that lead to remodeling of the immunopeptidome through IFNγ. IFNγ-induced changes in the abundance of source proteins, switching from the constitutive to the immunoproteasome, and differential upregulation of different HLA alleles explained some, but not all, observed peptide abundance changes. By selecting for peptides which increased or decreased the most in abundance, but originated from proteins with limited abundance changes, we discovered that the amino acid composition of presented peptides also influences whether a peptide is upregulated or downregulated on HLA-I through IFNγ. The presence of proline within the peptide core was most strongly associated with peptide downregulation. This was validated in an independent dataset. Proline substitution in relevant core positions did not influence the predicted HLA-I binding affinity or stability, indicating that proline effects on peptide processing may be most relevant. Understanding the multiple factors that influence the abundance of peptides presented on HLA-I in the absence or presence of IFNγ is important to identify the best targets for antigen-specific cancer immunotherapies such as vaccines or T-cell receptor engineered therapeutics. SIGNIFICANCE: IFNγ remodels the HLA-I-presented immunopeptidome. We showed that peptide-specific factors influence whether a peptide is upregulated or downregulated and identified a preferential loss or downregulation of those with proline near the peptide center. This will help selecting immunotherapy target antigens which are consistently presented by cancer cells.


Asunto(s)
Neoplasias , Proteómica , Humanos , Neoplasias/genética , Interferón gamma , Antígenos , Péptidos/química , Prolina
8.
Immunity ; 56(11): 2650-2663.e6, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37816353

RESUMEN

The accurate selection of neoantigens that bind to class I human leukocyte antigen (HLA) and are recognized by autologous T cells is a crucial step in many cancer immunotherapy pipelines. We reprocessed whole-exome sequencing and RNA sequencing (RNA-seq) data from 120 cancer patients from two external large-scale neoantigen immunogenicity screening assays combined with an in-house dataset of 11 patients and identified 46,017 somatic single-nucleotide variant mutations and 1,781,445 neo-peptides, of which 212 mutations and 178 neo-peptides were immunogenic. Beyond features commonly used for neoantigen prioritization, factors such as the location of neo-peptides within protein HLA presentation hotspots, binding promiscuity, and the role of the mutated gene in oncogenicity were predictive for immunogenicity. The classifiers accurately predicted neoantigen immunogenicity across datasets and improved their ranking by up to 30%. Besides insights into machine learning methods for neoantigen ranking, we have provided homogenized datasets valuable for developing and benchmarking companion algorithms for neoantigen-based immunotherapies.


Asunto(s)
Antígenos de Neoplasias , Neoplasias , Humanos , Antígenos de Neoplasias/genética , Neoplasias/genética , Neoplasias/terapia , Antígenos de Histocompatibilidad Clase I , Aprendizaje Automático , Péptidos , Inmunoterapia/métodos
9.
J Immunother Cancer ; 11(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37899131

RESUMEN

Identification of tumor antigens presented by the human leucocyte antigen (HLA) molecules is essential for the design of effective and safe cancer immunotherapies that rely on T cell recognition and killing of tumor cells. Mass spectrometry (MS)-based immunopeptidomics enables high-throughput, direct identification of HLA-bound peptides from a variety of cell lines, tumor tissues, and healthy tissues. It involves immunoaffinity purification of HLA complexes followed by MS profiling of the extracted peptides using data-dependent acquisition, data-independent acquisition, or targeted approaches. By incorporating DNA, RNA, and ribosome sequencing data into immunopeptidomics data analysis, the proteogenomic approach provides a powerful means for identifying tumor antigens encoded within the canonical open reading frames of annotated coding genes and non-canonical tumor antigens derived from presumably non-coding regions of our genome. We discuss emerging computational challenges in immunopeptidomics data analysis and tumor antigen identification, highlighting key considerations in the proteogenomics-based approach, including accurate DNA, RNA and ribosomal sequencing data analysis, careful incorporation of predicted novel protein sequences into reference protein database, special quality control in MS data analysis due to the expanded and heterogeneous search space, cancer-specificity determination, and immunogenicity prediction. The advancements in technology and computation is continually enabling us to identify tumor antigens with higher sensitivity and accuracy, paving the way toward the development of more effective cancer immunotherapies.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Neoplasias , Humanos , Espectrometría de Masas/métodos , Antígenos de Neoplasias , Péptidos , Antígenos HLA , Antígenos de Histocompatibilidad Clase II , ARN , ADN
10.
Nat Cancer ; 4(10): 1410-1417, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37735588

RESUMEN

We have previously shown that vaccination with tumor-pulsed dendritic cells amplifies neoantigen recognition in ovarian cancer. Here, in a phase 1 clinical study ( NCT01312376 /UPCC26810) including 19 patients, we show that such responses are further reinvigorated by subsequent adoptive transfer of vaccine-primed, ex vivo-expanded autologous peripheral blood T cells. The treatment is safe, and epitope spreading with novel neopeptide reactivities was observed after cell infusion in patients who experienced clinical benefit, suggesting reinvigoration of tumor-sculpting immunity.


Asunto(s)
Neoplasias Ováricas , Vacunas , Humanos , Femenino , Neoplasias Ováricas/terapia , Traslado Adoptivo , Vacunación , Linfocitos T
11.
Mol Cell Proteomics ; 22(9): 100631, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37572790

RESUMEN

Ribosome profiling (Ribo-Seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of noncanonical sites of ribosome translation outside the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7000 noncanonical ORFs are translated, which, at first glance, has the potential to expand the number of human protein CDSs by 30%, from ∼19,500 annotated CDSs to over 26,000 annotated CDSs. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of noncanonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome but searching for guidance on how to proceed. Here, we discuss the current state of noncanonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein coding."


Asunto(s)
Biosíntesis de Proteínas , Proteoma , Humanos , Proteoma/metabolismo , Proteómica/métodos , Perfilado de Ribosomas , Ribosomas/metabolismo , Sistemas de Lectura Abierta
12.
Cell Rep Methods ; 3(6): 100479, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37426762

RESUMEN

Mass spectrometry (MS)-based immunopeptidomics is an attractive antigen discovery method with growing clinical implications. However, the current experimental approach to extract HLA-restricted peptides requires a bulky sample source, which remains a challenge for obtaining clinical specimens. We present an innovative workflow that requires a low sample volume, which streamlines the immunoaffinity purification (IP) and C18 peptide cleanup on a single microfluidics platform with automated liquid handling and minimal sample transfers, resulting in higher assay sensitivity. We also demonstrate how the state-of-the-art data-independent acquisition (DIA) method further enhances the depth of tandem MS spectra-based peptide sequencing. Consequently, over 4,000 and 5,000 HLA-I-restricted peptides were identified from as few as 0.2 million RA957 cells and a melanoma tissue of merely 5 mg, respectively. We also identified multiple immunogenic tumor-associated antigens and hundreds of peptides derived from non-canonical protein sources. This workflow represents a powerful tool for identifying the immunopeptidome of sparse samples.


Asunto(s)
Microfluídica , Proteómica , Flujo de Trabajo , Proteómica/métodos , Espectrometría de Masas en Tándem , Péptidos/química
13.
Sci Immunol ; 8(85): eadd4817, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37418548

RESUMEN

Decreased antigen presentation contributes to the ability of cancer cells to evade the immune system. We used the minimal gene regulatory network of type 1 conventional dendritic cells (cDC1) to reprogram cancer cells into professional antigen-presenting cells (tumor-APCs). Enforced expression of the transcription factors PU.1, IRF8, and BATF3 (PIB) was sufficient to induce the cDC1 phenotype in 36 cell lines derived from human and mouse hematological and solid tumors. Within 9 days of reprogramming, tumor-APCs acquired transcriptional and epigenetic programs associated with cDC1 cells. Reprogramming restored the expression of antigen presentation complexes and costimulatory molecules on the surfaces of tumor cells, allowing the presentation of endogenous tumor antigens on MHC-I and facilitating targeted killing by CD8+ T cells. Functionally, tumor-APCs engulfed and processed proteins and dead cells, secreted inflammatory cytokines, and cross-presented antigens to naïve CD8+ T cells. Human primary tumor cells could also be reprogrammed to increase their capability to present antigen and to activate patient-specific tumor-infiltrating lymphocytes. In addition to acquiring improved antigen presentation, tumor-APCs had impaired tumorigenicity in vitro and in vivo. Injection of in vitro generated melanoma-derived tumor-APCs into subcutaneous melanoma tumors delayed tumor growth and increased survival in mice. Antitumor immunity elicited by tumor-APCs was synergistic with immune checkpoint inhibitors. Our approach serves as a platform for the development of immunotherapies that endow cancer cells with the capability to process and present endogenous tumor antigens.


Asunto(s)
Linfocitos T CD8-positivos , Melanoma , Humanos , Ratones , Animales , Reprogramación Celular , Células Dendríticas , Antígenos de Neoplasias , Melanoma/terapia , Melanoma/metabolismo
14.
Nat Commun ; 14(1): 3188, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280206

RESUMEN

The success of cancer immunotherapy depends in part on the strength of antigen recognition by T cells. Here, we characterize the T cell receptor (TCR) functional (antigen sensitivity) and structural (monomeric pMHC-TCR off-rates) avidities of 371 CD8 T cell clones specific for neoantigens, tumor-associated antigens (TAAs) or viral antigens isolated from tumors or blood of patients and healthy donors. T cells from tumors exhibit stronger functional and structural avidity than their blood counterparts. Relative to TAA, neoantigen-specific T cells are of higher structural avidity and, consistently, are preferentially detected in tumors. Effective tumor infiltration in mice models is associated with high structural avidity and CXCR3 expression. Based on TCR biophysicochemical properties, we derive and apply an in silico model predicting TCR structural avidity and validate the enrichment in high avidity T cells in patients' tumors. These observations indicate a direct relationship between neoantigen recognition, T cell functionality and tumor infiltration. These results delineate a rational approach to identify potent T cells for personalized cancer immunotherapy.


Asunto(s)
Melanoma , Animales , Ratones , Melanoma/metabolismo , Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos de Neoplasias , Células Clonales/metabolismo
15.
bioRxiv ; 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37292611

RESUMEN

Ribosome profiling (Ribo-seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of non-canonical sites of ribosome translation outside of the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7,000 non-canonical open reading frames (ORFs) are translated, which, at first glance, has the potential to expand the number of human protein-coding sequences by 30%, from ∼19,500 annotated CDSs to over 26,000. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of non-canonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome, but searching for guidance on how to proceed. Here, we discuss the current state of non-canonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein-coding". In brief: The human genome encodes thousands of non-canonical open reading frames (ORFs) in addition to protein-coding genes. As a nascent field, many questions remain regarding non-canonical ORFs. How many exist? Do they encode proteins? What level of evidence is needed for their verification? Central to these debates has been the advent of ribosome profiling (Ribo-seq) as a method to discern genome-wide ribosome occupancy, and immunopeptidomics as a method to detect peptides that are processed and presented by MHC molecules and not observed in traditional proteomics experiments. This article provides a synthesis of the current state of non-canonical ORF research and proposes standards for their future investigation and reporting. Highlights: Combined use of Ribo-seq and proteomics-based methods enables optimal confidence in detecting non-canonical ORFs and their protein products.Ribo-seq can provide more sensitive detection of non-canonical ORFs, but data quality and analytical pipelines will impact results.Non-canonical ORF catalogs are diverse and span both high-stringency and low-stringency ORF nominations.A framework for standardized non-canonical ORF evidence will advance the research field.

16.
Nat Cancer ; 4(5): 608-628, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37127787

RESUMEN

One key barrier to improving efficacy of personalized cancer immunotherapies that are dependent on the tumor antigenic landscape remains patient stratification. Although patients with CD3+CD8+ T cell-inflamed tumors typically show better response to immune checkpoint inhibitors, it is still unknown whether the immunopeptidome repertoire presented in highly inflamed and noninflamed tumors is substantially different. We surveyed 61 tumor regions and adjacent nonmalignant lung tissues from 8 patients with lung cancer and performed deep antigen discovery combining immunopeptidomics, genomics, bulk and spatial transcriptomics, and explored the heterogeneous expression and presentation of tumor (neo)antigens. In the present study, we associated diverse immune cell populations with the immunopeptidome and found a relatively higher frequency of predicted neoantigens located within HLA-I presentation hotspots in CD3+CD8+ T cell-excluded tumors. We associated such neoantigens with immune recognition, supporting their involvement in immune editing. This could have implications for the choice of combination therapies tailored to the patient's mutanome and immune microenvironment.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Antígenos de Neoplasias/metabolismo , Inmunoterapia , Inflamación , Microambiente Tumoral
17.
Immunity ; 56(6): 1359-1375.e13, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37023751

RESUMEN

CD4+ T cells orchestrate the adaptive immune response against pathogens and cancer by recognizing epitopes presented on class II major histocompatibility complex (MHC-II) molecules. The high polymorphism of MHC-II genes represents an important hurdle toward accurate prediction and identification of CD4+ T cell epitopes. Here we collected and curated a dataset of 627,013 unique MHC-II ligands identified by mass spectrometry. This enabled us to precisely determine the binding motifs of 88 MHC-II alleles across humans, mice, cattle, and chickens. Analysis of these binding specificities combined with X-ray crystallography refined our understanding of the molecular determinants of MHC-II motifs and revealed a widespread reverse-binding mode in HLA-DP ligands. We then developed a machine-learning framework to accurately predict binding specificities and ligands of any MHC-II allele. This tool improves and expands predictions of CD4+ T cell epitopes and enables us to discover viral and bacterial epitopes following the aforementioned reverse-binding mode.


Asunto(s)
Epítopos de Linfocito T , Péptidos , Humanos , Animales , Ratones , Bovinos , Ligandos , Unión Proteica , Pollos/metabolismo , Aprendizaje Automático , Antígenos de Histocompatibilidad Clase II , Alelos
18.
Semin Immunol ; 66: 101727, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36764021

RESUMEN

The immunopeptidome is the set of peptides presented by the major histocompatibility complex (MHC) molecules, in humans also known as the human leukocyte antigen (HLA), on the surface of cells that mediate T-cell immunosurveillance. The immunopeptidome is a sampling of the cellular proteome and hence it contains information about the health state of cells. The peptide repertoire is influenced by intra- and extra-cellular perturbations - such as in the case of drug exposure, infection, or oncogenic transformation. Immunopeptidomics is the bioanalytical method by which the presented peptides are extracted from biological samples and analyzed by high-performance liquid chromatography coupled to tandem mass spectrometry (MS), resulting in a deep qualitative and quantitative snapshot of the immunopeptidome. In this review, we discuss published immunopeptidomics studies from recent years, grouped into three main domains: i) basic, ii) pre-clinical and iii) clinical research and applications. We review selected fundamental immunopeptidomics studies on the antigen processing and presentation machinery, on HLA restriction and studies that advanced our understanding of various diseases, and how exploration of the antigenic landscape allowed immune targeting at the pre-clinical stage, paving the way to pioneering exploratory clinical trials where immunopeptidomics is directly implemented in the conception of innovative treatments for cancer patients.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Antígenos de Histocompatibilidad Clase I , Humanos , Antígenos HLA , Presentación de Antígeno , Péptidos
19.
Cancer Cell ; 40(7): 717-719, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35820396

RESUMEN

Immunoediting, the loss of tumor (neo)antigens due to T cell-dependent selection, sculpts tumor immunogenicity. In Nature, Luksza et al. conceive a model to score neoantigens' immunogenicity and predict tumor clonal evolution. With this model, they demonstrate that durable tumor control associates with selective limited acquisition of high-quality mutations.


Asunto(s)
Antígenos de Neoplasias , Neoplasias , Antígenos de Neoplasias/genética , Humanos , Mutación , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...