Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007641

RESUMEN

In response to DNA double-strand breaks (DSBs), the ATM kinase activates NF-κB factors to stimulate gene expression changes that promote survival and allow time for cells to repair damage. In cell lines, ATM can activate NF-κB transcription factors via two independent, convergent mechanisms. One is ATM-mediated phosphorylation of nuclear NF-κB essential modulator (Nemo) protein, which leads to monoubiquitylation and export of Nemo to the cytoplasm where it engages the IκB kinase (IKK) complex to activate NF-κB. Another is DSB-triggered migration of ATM into the cytoplasm, where it promotes monoubiquitylation of Nemo and the resulting IKK-mediated activation of NF-κB. ATM has many other functions in the DSB response beyond activation of NF-κB, and Nemo activates NF-κB downstream of diverse stimuli, including developmental or proinflammatory stimuli such as LPSs. To elucidate the in vivo role of DSB-induced, ATM-dependent changes in expression of NF-κB-responsive genes, we generated mice expressing phosphomutant Nemo protein lacking consensus SQ sites for phosphorylation by ATM or related kinases. We demonstrate that these mice are viable/healthy and fertile and exhibit overall normal B and T lymphocyte development. Moreover, treatment of their B lineage cells with LPS induces normal NF-κB-regulated gene expression changes. Furthermore, in marked contrast to results from a pre-B cell line, primary B lineage cells expressing phosphomutant Nemo treated with the genotoxic drug etoposide induce normal ATM- and Nemo-dependent changes in expression of NF-κB-regulated genes. Our data demonstrate that ATM-dependent phosphorylation of Nemo SQ motifs in vivo is dispensable for DSB-signaled changes in expression of NF-κB-regulated genes.

2.
J Exp Med ; 221(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38189780

RESUMEN

The dynamic folding of genomes regulates numerous biological processes, including antigen receptor (AgR) gene assembly. We show that, unlike other AgR loci, homotypic chromatin interactions and bidirectional chromosome looping both contribute to structuring Tcrb for efficient long-range V(D)J recombination. Inactivation of the CTCF binding element (CBE) or promoter at the most 5'Vß segment (Trbv1) impaired loop extrusion originating locally and extending to DßJß CBEs at the opposite end of Tcrb. Promoter or CBE mutation nearly eliminated Trbv1 contacts and decreased RAG endonuclease-mediated Trbv1 recombination. Importantly, Trbv1 rearrangement can proceed independent of substrate orientation, ruling out scanning by DßJß-bound RAG as the sole mechanism of Vß recombination, distinguishing it from Igh. Our data indicate that CBE-dependent generation of loops cooperates with promoter-mediated activation of chromatin to juxtapose Vß and DßJß segments for recombination through diffusion-based synapsis. Thus, the mechanisms that fold a genomic region can influence molecular processes occurring in that space, which may include recombination, repair, and transcriptional programming.


Asunto(s)
Cromatina , Receptores de Antígenos , Cromatina/genética , Endonucleasas , Mutación , Regiones Promotoras Genéticas/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética
3.
J Immunol ; 212(4): 534-540, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38117277

RESUMEN

In jawed vertebrates, adaptive immunity depends on the process of V(D)J recombination creating vast numbers of T and B lymphocytes that each expresses unique Ag receptors of uniform specificity. The asynchronous initiation of V-to-(D)J rearrangement between alleles and the resulting protein from one allele signaling feedback inhibition of V recombination on the other allele ensures homogeneous receptor specificity of individual cells. Upon productive Vß-to-DßJß rearrangements in noncycling double-negative thymocytes, TCRß protein signals induction of the cyclin D3 protein to accelerate cell cycle entry, thereby driving proliferative expansion of developing αß T cells. Through undetermined mechanisms, the inactivation of cyclin D3 in mice causes an increased frequency of αß T cells that express TCRß proteins from both alleles, producing lymphocytes of heterogeneous specificities. To determine how cyclin D3 enforces monogenic TCRß expression, we used our mouse lines with enhanced rearrangement of specific Vß segments due to replacement of their poor-quality recombination signal sequence (RSS) DNA elements with a better RSS. We show that cyclin D3 inactivation in these mice elevates the frequencies of αß T cells that display proteins from RSS-augmented Vß segments on both alleles. By assaying mature αß T cells, we find that cyclin D3 deficiency increases the levels of Vß rearrangements that occur within developing thymocytes. Our data demonstrate that a component of the cell cycle machinery mediates TCRß protein-signaled feedback inhibition in thymocytes to achieve monogenic TCRß expression and resulting uniform specificity of individual αß T cells.


Asunto(s)
Receptores de Antígenos de Linfocitos T alfa-beta , Timocitos , Animales , Ratones , Alelos , Ciclina D3/genética , Retroalimentación , Reordenamiento Génico de la Cadena beta de los Receptores de Antígenos de los Linfocitos T , Linfocitos , Receptores de Antígenos de Linfocitos T alfa-beta/genética
4.
Methods Mol Biol ; 2580: 261-282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36374463

RESUMEN

Quantitative real-time PCR and next-generation sequencing (NGS) are invaluable techniques to analyze T cell receptor (Tcr) gene rearrangements in mouse lymphocyte populations. Although these approaches are powerful, they also have limitations that must be accounted for in experimental design and data interpretation. Here, we provide relevant background required for understanding these limitations and then outline established quantitative real-time PCR and NGS methods that can be used for analysis of mouse Tcra and Tcrb gene rearrangements in mice.


Asunto(s)
Reordenamiento Génico , Receptores de Antígenos de Linfocitos T alfa-beta , Ratones , Animales , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Reacción en Cadena de la Polimerasa
5.
J Immunol ; 209(5): 938-949, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35948399

RESUMEN

RAG1/RAG2 (RAG) endonuclease-mediated assembly of diverse lymphocyte Ag receptor genes by V(D)J recombination is critical for the development and immune function of T and B cells. The RAG1 protein contains a ubiquitin ligase domain that stabilizes RAG1 and stimulates RAG endonuclease activity in vitro. We report in this study that mice with a mutation that inactivates the Rag1 ubiquitin ligase in vitro exhibit decreased rearrangements and altered repertoires of TCRß and TCRα genes in thymocytes and impaired thymocyte developmental transitions that require the assembly and selection of functional TCRß and/or TCRα genes. These Rag1 mutant mice present diminished positive selection and superantigen-mediated negative selection of conventional αß T cells, decreased genesis of invariant NK T lineage αß T cells, and mature CD4+ αß T cells with elevated autoimmune potential. Our findings reveal that the Rag1 ubiquitin ligase domain functions in vivo to stimulate TCRß and TCRα gene recombination and influence differentiation of αß T lineage cells, thereby establishing replete diversity of αß TCRs and populations of αß T cells while restraining generation of potentially autoreactive conventional αß T cells.


Asunto(s)
Proteínas de Homeodominio , Receptores de Antígenos de Linfocitos T alfa-beta , Ubiquitina , Animales , Linaje de la Célula , Endonucleasas/genética , Proteínas de Homeodominio/genética , Ligasas/genética , Ratones , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Superantígenos , Recombinación V(D)J/genética
6.
J Immunol ; 209(1): 93-98, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35697383

RESUMEN

The ability of individual T and B cells to display Ag receptors of unique uniform specificity is the molecular basis of adaptive immunity. Most αß T cells achieve uniform specificity by assembling in-frame genes on only one allelic copy of TCRß and TCRα loci, while others prevent incorporation of TCRα protein from both alleles into TCRs. Analysis of mice expressing TCR proteins from a restricted combination of transgenes showed that TCR protein pairing restrictions achieve uniform specificity of cells expressing two types of TCRß protein. However, whether this mechanism operates in the physiological context where each dual-TCRß cell expresses one set of a vast number of different TCRß proteins remains an open question, largely because there is a low, but significant, portion of cells carrying two in-frame TCRß genes. To resolve this issue, we inactivated one allelic copy of the TCRα locus in a new mouse strain that assembles two in-frame TCRß genes in an elevated fraction of cells. This genetic manipulation has no effect on the frequency of cells that display multiple types of αß TCR, yet increases the representation of cells displaying TCRß proteins that generate more highly expressed TCRs. Our data demonstrate that some TCRß proteins exhibit differential functional pairing with TCRα proteins, but these restrictions have negligible contribution for ensuring uniform specificity of cells that express two types of TCRß protein. Therefore, we conclude that mechanisms governing monogenic assembly and expression of TCRß genes in individual cells are paramount for uniform specificity of αß T lymphocytes.


Asunto(s)
Receptores de Antígenos de Linfocitos T alfa-beta , Linfocitos T , Alelos , Animales , Ratones , Receptores de Antígenos/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Transgenes
7.
J Immunol ; 208(11): 2583-2592, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35534211

RESUMEN

The monoallelic expression (allelic exclusion) of diverse lymphocyte Ag receptor genes enables specific immune responses. Allelic exclusion is achieved by asynchronous initiation of V(D)J recombination between alleles and protein encoded by successful rearrangement on the first allele signaling permanent inhibition of V rearrangement on the other allele. The ATM kinase that guides DNA repair and transiently suppresses V(D)J recombination also helps impose allelic exclusion through undetermined mechanisms. At the TCRß locus, one Vß gene segment (V31) rearranges only by inversion, whereas all other Vß segments rearrange by deletion except for rare cases in which they rearrange through inversion following V31 rearrangement. The poor-quality recombination signal sequences (RSSs) of V31 and V2 help establish TCRß gene repertoire and allelic exclusion by stochastically limiting initiation of Vß rearrangements before TCRß protein-signaled permanent silencing of Vß recombination. We show in this study in mice that ATM functions with these RSSs and the weak V1 RSS to shape TCRß gene repertoire by restricting their Vß segments from initiating recombination and hindering aberrant nonfunctional Vß recombination products, especially during inversional V31 rearrangements. We find that ATM collaborates with the V1 and V2 RSSs to help enforce allelic exclusion by facilitating competition between alleles for initiation and functional completion of rearrangements of these Vß segments. Our data demonstrate that the fundamental genetic DNA elements that underlie inefficient Vß recombination cooperate with ATM-mediated rapid DNA damage responses to help establish diversity and allelic exclusion of TCRß genes.


Asunto(s)
Señales de Clasificación de Proteína , Receptores de Antígenos de Linfocitos T alfa-beta , Alelos , Animales , Daño del ADN , Reparación del ADN/genética , Reordenamiento Génico de la Cadena beta de los Receptores de Antígenos de los Linfocitos T/genética , Ratones , Señales de Clasificación de Proteína/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Recombinación V(D)J/genética
8.
J Immunol ; 208(2): 371-383, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34965965

RESUMEN

Monoallelic AgR gene expression underlies specific adaptive immune responses. AgR allelic exclusion is achieved by sequential initiation of V(D)J recombination between alleles and resultant protein from one allele signaling to prevent recombination of the other. The ATM kinase, a regulator of the DNA double-strand break (DSB) response, helps enforce allelic exclusion through undetermined mechanisms. ATM promotes repair of RAG1/RAG2 (RAG) endonuclease-induced DSBs and transduces signals from RAG DSBs during Igk gene rearrangement on one allele to transiently inhibit RAG1 protein expression, Igk accessibility, and RAG cleavage of the other allele. Yet, the relative contributions of ATM functions in DSB repair versus signaling to enforce AgR allelic exclusion remain undetermined. In this study, we demonstrate that inactivation in mouse pre-B cells of the NF-κB essential modulator (Nemo) protein, an effector of ATM signaling, diminishes RAG DSB-triggered repression of Rag1/Rag2 transcription and Igk accessibility but does not result in aberrant repair of RAG DSBs like ATM inactivation. We show that Nemo deficiency increases simultaneous biallelic Igk cleavage in pre-B cells and raises the frequency of B cells expressing Igκ proteins from both alleles. In contrast, the incidence of biallelic Igκ expression is not elevated by inactivation of the SpiC transcriptional repressor, which is induced by RAG DSBs in an ATM-dependent manner and suppresses Igk accessibility. Thus, we conclude that Nemo-dependent, ATM-mediated DNA damage signals enforce Igκ allelic exclusion by orchestrating transient repression of RAG expression and feedback inhibition of additional Igk rearrangements in response to RAG cleavage on one Igk allele.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Inmunoglobulinas/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pérdida de Heterocigocidad/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Células Cultivadas , Anergia Clonal/genética , Anergia Clonal/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/inmunología , Inmunoglobulinas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Recombinación V(D)J/genética
9.
J Exp Med ; 218(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34402853

RESUMEN

Immunoglobulin and T cell receptor gene assembly depends on V(D)J recombination initiated by the RAG1-RAG2 recombinase. The RAG1 N-terminal region (NTR; aa 1-383) has been implicated in regulatory functions whose influence on V(D)J recombination and lymphocyte development in vivo is poorly understood. We generated mice in which RAG1 lacks ubiquitin ligase activity (P326G), the major site of autoubiquitination (K233R), or its first 215 residues (Δ215). While few abnormalities were detected in R1.K233R mice, R1.P326G mice exhibit multiple features indicative of reduced recombination efficiency, including an increased Igκ+:Igλ+ B cell ratio and decreased recombination of Igh, Igκ, Igλ, and Tcrb loci. Previous studies indicate that synapsis of recombining partners during Igh recombination occurs through two pathways: long-range scanning and short-range collision. We find that R1Δ215 mice exhibit reduced short-range Igh and Tcrb D-to-J recombination. Our findings indicate that the RAG1 NTR regulates V(D)J recombination and lymphocyte development by multiple pathways, including control of the balance between short- and long-range recombination.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Recombinación V(D)J/fisiología , Animales , Linfocitos B/fisiología , Femenino , Proteínas de Homeodominio/genética , Inmunoglobulinas/genética , Linfocitos/fisiología , Masculino , Ratones Mutantes , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Subgrupos de Linfocitos T/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
10.
Proc Natl Acad Sci U S A ; 117(31): 18172-18174, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32690689

RESUMEN

The assembly of T cell receptor (TCR) and immunoglobulin (Ig) genes by V(D)J recombination generates the antigen receptor (AgR) diversity that is vital for adaptive immunity. At most AgR loci, V(D)J recombination is regulated so that only one allele assembles a functional gene, ensuring that nearly every T and B cell expresses a single type, or specificity, of AgR. The genomic organizations of some AgR loci permit the assembly and expression of two distinct genes on each allele; however, this is prevented by undetermined mechanisms. We show that the poor qualities of recombination signal sequences (RSSs) flanking Vß gene segments suppress the assembly and expression of two distinct TCRß genes from a single allele. Our data demonstrate that an intrinsic genetic mechanism that stochastically limits Vß recombination efficiency governs monogenic TCRß expression, thereby restraining the expression of multiple AgRs on αß T cells.


Asunto(s)
Genes Codificadores de la Cadena beta de los Receptores de Linfocito T/fisiología , Recombinación V(D)J , Animales , Femenino , Regulación de la Expresión Génica/fisiología , Heterocigoto , Masculino , Ratones , Linfocitos T
11.
Nat Commun ; 11(1): 3158, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572033

RESUMEN

Efficient repair of DNA double-strand breaks (DSBs) requires a coordinated DNA Damage Response (DDR), which includes phosphorylation of histone H2Ax, forming γH2Ax. This histone modification spreads beyond the DSB into neighboring chromatin, generating a DDR platform that protects against end disassociation and degradation, minimizing chromosomal rearrangements. However, mechanisms that determine the breadth and intensity of γH2Ax domains remain unclear. Here, we show that chromosomal contacts of a DSB site are the primary determinants for γH2Ax landscapes. DSBs that disrupt a topological border permit extension of γH2Ax domains into both adjacent compartments. In contrast, DSBs near a border produce highly asymmetric DDR platforms, with γH2Ax nearly absent from one broken end. Collectively, our findings lend insights into a basic DNA repair mechanism and how the precise location of a DSB may influence genome integrity.


Asunto(s)
Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN , Histonas/metabolismo , Animales , Línea Celular Transformada , Cromatina/metabolismo , Ratones , Fosforilación
12.
J Exp Med ; 217(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32526772

RESUMEN

The monoallelic expression of antigen receptor (AgR) genes, called allelic exclusion, is fundamental for highly specific immune responses to pathogens. This cardinal feature of adaptive immunity is achieved by the assembly of a functional AgR gene on one allele, with subsequent feedback inhibition of V(D)J recombination on the other allele. A range of epigenetic mechanisms have been implicated in sequential recombination of AgR alleles; however, we now demonstrate that a genetic mechanism controls this process for Tcrb. Replacement of V(D)J recombinase targets at two different mouse Vß gene segments with a higher quality target elevates Vß rearrangement frequency before feedback inhibition, dramatically increasing the frequency of T cells with TCRß chains derived from both Tcrb alleles. Thus, TCRß allelic exclusion is enforced genetically by the low quality of Vß recombinase targets that stochastically restrict the production of two functional rearrangements before feedback inhibition silences one allele.


Asunto(s)
Alelos , Señales de Clasificación de Proteína , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Recombinación V(D)J/genética , Animales , Secuencia de Bases , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Hibridomas , Ratones Endogámicos C57BL , Ratones Transgénicos , Unión Proteica , Proteínas Proto-Oncogénicas c-fos/metabolismo , Linfocitos T/citología , Timocitos/citología
13.
J Immunol ; 204(10): 2617-2626, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32366683

RESUMEN

The past decade has increased our understanding of how genome topology controls RAG endonuclease-mediated assembly of lymphocyte AgR genes. New technologies have illuminated how the large IgH, Igκ, TCRα/δ, and TCRß loci fold into compact structures that place their numerous V gene segments in similar three-dimensional proximity to their distal recombination center composed of RAG-bound (D)J gene segments. Many studies have shown that CTCF and cohesin protein-mediated chromosome looping have fundamental roles in lymphocyte lineage- and developmental stage-specific locus compaction as well as broad usage of V segments. CTCF/cohesin-dependent loops have also been shown to direct and restrict RAG activity within chromosome domains. We summarize recent work in elucidating molecular mechanisms that govern three-dimensional chromosome organization and in investigating how these dynamic mechanisms control V(D)J recombination. We also introduce remaining questions for how CTCF/cohesin-dependent and -independent genome architectural mechanisms might regulate compaction and recombination of AgR loci.


Asunto(s)
Linfocitos B/inmunología , Receptores de Antígenos/genética , Linfocitos T/inmunología , Recombinación V(D)J/genética , Animales , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Estructuras Cromosómicas , Sitios Genéticos , Humanos , Conformación Molecular , Receptores de Antígenos/metabolismo , Cohesinas
14.
Immunohorizons ; 4(3): 119-128, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144186

RESUMEN

The RAG1 and RAG2 proteins are essential for the assembly of Ag receptor genes in the process known as VDJ recombination, allowing for an immense diversity of lymphocyte Ag receptors. Congruent with their importance, RAG1 and RAG2 have been a focus of intense study for decades. To date, RAG1 has been studied as a single isoform; however, our identification of a spontaneous nonsense mutation in the 5' region of the mouse Rag1 gene lead us to discover N-truncated RAG1 isoforms made from internal translation initiation. Mice homozygous for the RAG1 nonsense mutation only express N-truncated RAG1 isoforms and have defects in Ag receptor rearrangement similar to human Omenn syndrome patients with truncating 5' RAG1 frameshift mutations. We show that the N-truncated RAG1 isoforms are derived from internal translation initiation start sites. Given the seemingly inactivating Rag1 mutation, it is striking that homozygous mutant mice do not have the expected SCID. We propose that evolution has garnered RAG1 and other important genes with the ability to form truncated proteins via internal translation to minimize the deleterious effects of 5' nonsense mutations. This mechanism of internal translation initiation is particularly important to consider when interpreting nonsense or frameshift mutations in whole-genome sequencing, as such mutations may not lead to loss of protein.


Asunto(s)
Codón sin Sentido , Genes RAG-1 , Proteínas de Homeodominio/genética , Animales , Modelos Animales de Enfermedad , Células HEK293 , Homocigoto , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Iniciación de la Cadena Peptídica Traduccional/genética , Isoformas de Proteínas , Inmunodeficiencia Combinada Grave/genética , Transfección , Recombinación V(D)J/genética
15.
J Immunol ; 204(1): 78-86, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31740488

RESUMEN

Mammalian TCRß loci contain 30 Vß gene segments upstream and in the same transcriptional orientation as two DJCß clusters, and a downstream Vß (TRBV31) in the opposite orientation. The textbook view is upstream Vßs rearrange only by deletion and TRBV31 rearranges only by inversion to create VßDJCß genes. In this study, we show in mice that upstream Vßs recombine through inversion to the DJCß2 cluster on alleles carrying a preassembled Trbv31-DJCß1 gene. When this gene is in-frame, Trbv5 evades TCRß-signaled feedback inhibition and recombines by inversion to the DJCß2 cluster, creating αß T cells that express assembled Trbv5-DJCß2 genes. On alleles with an out-of-frame Trbv31-DJCß1 gene, most upstream Vßs recombine at low levels and promote αß T cell development, albeit with preferential expansion of Trbv1-DJß2 rearrangements. Finally, we show wild-type Tcrb alleles produce mature αß T cells that express upstream Vß peptides in surface TCRs and carry Trbv31-DJß2 rearrangements. Our study indicates two successive inversional Vß-to-DJß rearrangements on the same allele can contribute to the TCRß repertoire.


Asunto(s)
Genes Codificadores de la Cadena beta de los Receptores de Linfocito T/genética , Alelos , Animales , Genes Codificadores de la Cadena beta de los Receptores de Linfocito T/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Linfocitos T/inmunología
19.
Trends Genet ; 33(7): 479-489, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28532625

RESUMEN

It has been recognized for 40 years that the variable (diversity) joining [V(D)J] recombination-mediated assembly of diverse B and T lymphocyte antigen receptor (AgR) genes is not only essential for adaptive immunity, but also a risk for autoimmunity and lymphoid malignancies. Over the past few years, several studies have revealed that recombination-activating gene (RAG) endonuclease-induced DNA double-strand breaks (DSBs) transcend hazardous intermediates during antigen receptor gene assembly. RAG cleavage within the genomes of lymphocyte progenitors and immature lymphocytes regulates the expression of ubiquitous and lymphocyte-specific gene transcripts to control the differentiation and function of both adaptive and innate immune cell lineages. These unexpected discoveries raise important new questions that have broad implications for basic immunology research and the screening, diagnosis, and treatment of human immunological disease.


Asunto(s)
Daño del ADN , Inmunidad/genética , Recombinación V(D)J , Animales , Humanos
20.
J Immunol ; 198(7): 2943-2956, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28213501

RESUMEN

Mammalian cells have evolved a common DNA damage response (DDR) that sustains cellular function, maintains genomic integrity, and suppresses malignant transformation. In pre-B cells, DNA double-strand breaks (DSBs) induced at Igκ loci by the Rag1/Rag2 (RAG) endonuclease engage this DDR to modulate transcription of genes that regulate lymphocyte-specific processes. We previously reported that RAG DSBs induced at one Igκ allele signal through the ataxia telangiectasia mutated (ATM) kinase to feedback-inhibit RAG expression and RAG cleavage of the other Igκ allele. In this article, we show that DSBs induced by ionizing radiation, etoposide, or bleomycin suppress Rag1 and Rag2 mRNA levels in primary pre-B cells, pro-B cells, and pro-T cells, indicating that inhibition of Rag1 and Rag2 expression is a prevalent DSB response among immature lymphocytes. DSBs induced in pre-B cells signal rapid transcriptional repression of Rag1 and Rag2, causing downregulation of both Rag1 and Rag2 mRNA, but only Rag1 protein. This transcriptional inhibition requires the ATM kinase and the NF-κB essential modulator protein, implicating a role for ATM-mediated activation of canonical NF-κB transcription factors. Finally, we demonstrate that DSBs induced in pre-B cells by etoposide or bleomycin inhibit recombination of Igκ loci and a chromosomally integrated substrate. Our data indicate that immature lymphocytes exploit a common DDR signaling pathway to limit DSBs at multiple genomic locations within developmental stages wherein monoallelic Ag receptor locus recombination is enforced. We discuss the implications of our findings for mechanisms that orchestrate the differentiation of monospecific lymphocytes while suppressing oncogenic Ag receptor locus translocations.


Asunto(s)
Roturas del ADN de Doble Cadena , Regulación de la Expresión Génica/inmunología , Células Progenitoras Linfoides/metabolismo , Animales , Southern Blotting , Western Blotting , Proteínas de Unión al ADN/metabolismo , Citometría de Flujo , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Genética , Recombinación V(D)J/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...