Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37052767

RESUMEN

BACKGROUND: The colonization of skin with pathogenic, partially antibiotic-resistant bacteria is frequently a severe problem in dermatological therapies. For instance, skin colonization with Staphylococcus aureus is even a disease-promoting factor in atopic dermatitis. The photodynamic inactivation (PDI) of bacteria could be a new antibacterial procedure. Upon irradiation with visible light, a special photosensitizer exclusively generates singlet oxygen. This reactive oxygen species kills bacteria via oxidation independent of species or strain and their antibiotic resistance profile causing no bacterial resistance on its part. OBJECTIVE: To investigate the antibacterial potential of a photosensitizer, formulated in a new hydrogel, on human skin ex vivo. METHODS: The photochemical stability of the photosensitizer and its ability to generate singlet oxygen in the hydrogel was studied. Antimicrobial efficacy of this hydrogel was tested step by step, firstly on inanimate surfaces and then on human skin ex vivo against S. aureus and Pseudomonas aeruginosa using standard colony counting. NBTC staining and TUNEL assays were performed on skin biopsies to investigate potential necrosis and apoptosis effects in skin cells possibly caused by PDI. RESULTS: None of the hydrogel components affected the photochemical stability and the life time of singlet oxygen. On inanimate surfaces as well as on the human skin, the number of viable bacteria was reduced by up to 4.8 log10 being more effective than most other antibacterial topical agents. Histology and assays showed that PDI against bacteria on the skin surface caused no harmful effects on the underlying skin cells. CONCLUSION: Photodynamic inactivation hydrogel proved to be effective for decolonization of human skin including the potential to act against superficial skin infections. Being a water-based formulation, the hydrogel should be also suitable for the mucosa. The results of the present ex vivo study form a good basis for conducting clinical studies in vivo.

2.
Front Aging Neurosci ; 14: 935781, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204550

RESUMEN

Transferring a unimanual motor skill to the untrained hand, a phenomenon known as cross-limb transfer, was shown to deteriorate as a function of age. While transcranial direct current stimulation (tDCS) ipsilateral to the trained hand facilitated cross-limb transfer in older adults, little is known about the contribution of the contralateral hemisphere to cross-limb transfer. In the present study, we investigated whether tDCS facilitates cross-limb transfer in older adults when applied over the motor cortex (M1) contralateral to the trained hand. Furthermore, the study aimed at investigating short-term recovery of tDCS-associated cross-limb transfer. In a randomized, double-blinded, sham-controlled setting, 30 older adults (67.0 ± 4.6 years, 15 female) performed a short grooved-pegboard training using their left hand, while anodal (a-tDCS) or sham-tDCS (s-tDCS) was applied over right M1 for 20 min. Left (LH trained ) - and right-hand (RH untrained ) performance was tested before and after training and in three recovery measures 15, 30 and 45 min after training. LH trained performance improved during both a-tDCS and s-tDCS and improvements persisted during recovery measures for at least 45 min. RH untrained performance improved only following a-tDCS but not after s-tDCS and outlasted the stimulation period for at least 45 min. Together, these data indicate that tDCS over the M1 contralateral to the trained limb is capable of enhancing cross-limb transfer in older adults, thus showing that cross-limb transfer is mediated not only by increased bi-hemispheric activation.

3.
Artículo en Inglés | MEDLINE | ID: mdl-35206511

RESUMEN

Millions of people use public transportation daily worldwide and frequently touch surfaces, thereby producing a reservoir of microorganisms on surfaces increasing the risk of transmission. Constant occupation makes sufficient cleaning difficult to achieve. Thus, an autonomous, permanent, antimicrobial coating (AMC) could keep down the microbial burden on such surfaces. A photodynamic AMC was applied to frequently touched surfaces in buses. The microbial burden (colony forming units, cfu) was determined weekly and compared to equivalent surfaces in buses without AMC (references). The microbial burden ranged from 0-209 cfu/cm2 on references and from 0-54 cfu/cm2 on AMC. The means were 13.4 ± 29.6 cfu/cm2 on references and 4.5 ± 8.4 cfu/cm2 on AMC (p < 0.001). The difference in microbial burden on AMC and references was almost constant throughout the study. Considering a hygiene benchmark of 5 cfu/cm2, the data yield an absolute risk reduction of 22.6% and a relative risk reduction of 50.7%. In conclusion, photodynamic AMC kept down the microbial burden, reducing the risk of transmission of microorganisms. AMC permanently and autonomously contributes to hygienic conditions on surfaces in public transportation. Photodynamic AMC therefore are suitable for reducing the microbial load and closing hygiene gaps in public transportation.


Asunto(s)
Antiinfecciosos , Antibacterianos , Recuento de Colonia Microbiana , Humanos , Vehículos a Motor , Transportes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...