Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Oncotarget ; 9(47): 28294-28308, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29983861

RESUMEN

Melanoma is the most dangerous form of skin cancer with a growing incidence over the last decades. Fourty percent of all melanomas harbor a mutation in the signaling adaptor BRAF (V600E) that results in ERK hyperactivity as an oncogenic driver. In these cases, treatment with the BRAFV600E inhibitors Vemurafenib (VEM) or Dabrafenib (DAB) coapplied with the MEK1/2 inhibitors Cobimetinib (COB) or Trametinib (TRA) can result in long-term suppression of tumor growth. Besides direct suppression of ERK activity, these inhibitors have been reported to also modulate tumor immune responses, and exert pro-inflammatory side effects such as fever and rash in some patients. Here we asked for potential effects of BRAFV600E inhibitors on dendritic cells (DC) which are essential for the induction of adaptive anti-tumor responses. Both splenic and bone marrow-derived (BM) mouse dendritic cells (DC) up-regulated costimulator expression (CD80, CD86) in response to DAB but not VEM treatment. Moreover, DAB and to lesser extent VEM enhanced IL-1ß (interleukin 1 beta) release by splenic DC, and by LPS-stimulated BMDC. We demonstrate that DAB and VEM activated the NLRC4/Caspase-1 inflammasome. At high concentration, DAB also induced inflammasome activation independent of Caspase-1. TRA and COB elevated MHCII expression on BMDC, and modulated the LPS-induced cytokine pattern. Immunomodulatory activity of DAB and VEM was also observed in human monocyte-derived DC, and DAB induced IL-1ß in human primary DC. Altogether, our study shows that BRAFV600E inhibitors upregulate IL-1ß release by mouse and human DC which may affect the DC-mediated course of anti-tumor immune responses.

3.
PLoS Negl Trop Dis ; 12(1): e0006096, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29329289

RESUMEN

BACKGROUND: The control over iron homeostasis is critical in host-pathogen-interaction. Iron plays not only multiple roles for bacterial growth and pathogenicity, but also for modulation of innate immune responses. Hepcidin is a key regulator of host iron metabolism triggering degradation of the iron exporter ferroportin. Although iron overload in humans is known to increase susceptibility to Burkholderia pseudomallei, it is unclear how the pathogen competes with the host for the metal during infection. This study aimed to investigate whether B. pseudomallei, the causative agent of melioidosis, modulates iron balance and how regulation of host cell iron content affects intracellular bacterial proliferation. PRINCIPAL FINDINGS: Upon infection of primary macrophages with B. pseudomallei, expression of ferroportin was downregulated resulting in higher iron availability within macrophages. Exogenous modification of iron export function by hepcidin or iron supplementation by ferric ammonium citrate led to increased intracellular iron pool stimulating B. pseudomallei growth, whereas the iron chelator deferoxamine reduced bacterial survival. Iron-loaded macrophages exhibited a lower expression of NADPH oxidase, iNOS, lipocalin 2, cytokines and activation of caspase-1. Infection of mice with the pathogen caused a diminished hepatic ferroportin expression, higher iron retention in the liver and lower iron levels in the serum (hypoferremia). In vivo administration of ferric ammonium citrate tended to promote the bacterial growth and inflammatory response, whereas limitation of iron availability significantly ameliorated bacterial clearance, attenuated serum cytokine levels and improved survival of infected mice. CONCLUSIONS: Our data indicate that modulation of the cellular iron balance is likely to be a strategy of B. pseudomallei to improve iron acquisition and to restrict antibacterial immune effector mechanisms and thereby to promote its intracellular growth. Moreover, we provide evidence that changes in host iron homeostasis can influence susceptibility to melioidosis, and suggest that iron chelating drugs might be an additional therapeutic option.


Asunto(s)
Burkholderia pseudomallei/fisiología , Interacciones Huésped-Patógeno , Hierro/metabolismo , Macrófagos/microbiología , Viabilidad Microbiana , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Hepatocitos/microbiología , Melioidosis/microbiología , Ratones Endogámicos C57BL
4.
Infect Immun ; 85(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27849181

RESUMEN

Aggregatibacter actinomycetemcomitans is a Gram-negative commensal bacterium of the oral cavity which has been associated with the pathogenesis of periodontitis with severe alveolar bone destruction. The role of host factors such as reactive oxygen and nitrogen intermediates in periodontal A. actinomycetemcomitans infection and progression to periodontitis is still ill-defined. Therefore, this study aimed to analyze the role of NADPH oxidase and inducible nitric oxide synthase (iNOS) in a murine model of A. actinomycetemcomitans-induced periodontitis. NADPH oxidase-deficient (gp91phox knockout [KO]), iNOS-deficient (iNOS KO), and C57BL/6 wild-type mice were orally infected with A. actinomycetemcomitans and analyzed for bacterial colonization at various time points. Alveolar bone mineral density and alveolar bone volume were quantified by three-dimensional micro-computed tomography, and the degree of tissue inflammation was calculated by histological analyses. At 5 weeks after infection, A. actinomycetemcomitans persisted at significantly higher levels in the murine oral cavities of infected gp91phox KO mice than in those of iNOS KO and C57BL/6 mice. Concomitantly, alveolar bone mineral density was significantly lower in all three infected groups than in uninfected controls, but with the highest loss of bone density in infected gp91phox KO mice. Only infected gp91phox KO mice revealed significant loss of alveolar bone volume and enhanced inflammatory cell infiltration, as well as an increased number of osteoclasts. Our results indicate that NADPH oxidase is important to control A. actinomycetemcomitans infection in the murine oral cavity and to prevent subsequent alveolar bone destruction and osteoclastogenesis.


Asunto(s)
Aggregatibacter actinomycetemcomitans , Resistencia a la Enfermedad , NADPH Oxidasas/metabolismo , Periodontitis/metabolismo , Periodontitis/microbiología , Pérdida de Hueso Alveolar/diagnóstico por imagen , Pérdida de Hueso Alveolar/patología , Animales , Carga Bacteriana , Densidad Ósea , Modelos Animales de Enfermedad , Femenino , Interacciones Huésped-Patógeno , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , NADPH Oxidasa 2 , NADPH Oxidasas/deficiencia , NADPH Oxidasas/genética , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Osteoclastos/metabolismo , Periodontitis/diagnóstico , Periodontitis/genética
5.
J Immunol ; 197(3): 834-46, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27316684

RESUMEN

The environmental bacterium and potential biothreat agent Burkholderia pseudomallei causes melioidosis, an often fatal infectious disease. Increased serum bilirubin has been shown to be a negative predictive factor in melioidosis patients. We therefore investigated the role of heme oxygenase-1 (HO-1), which catalyzes the degradation of heme into the bilirubin precursor biliverdin, ferrous iron, and CO during B. pseudomallei infection. We found that infection of murine macrophages induces HO-1 expression, involving activation of several protein kinases and the transcription factor nuclear erythroid-related factor 2 (Nrf2). Deficiency of Nrf2 improved B. pseudomallei clearance by macrophages, whereas Nrf2 activation by sulforaphane and tert-butylhydroquinone with subsequent HO-1 induction enhanced intracellular bacterial growth. The HO-1 inducer cobalt protoporphyrin IX diminished proinflammatory cytokine levels, leading to an increased bacterial burden in macrophages. In contrast, HO-1 gene knockdown reduced the survival of intramacrophage B. pseudomallei Pharmacological administration of cobalt protoporphyrin IX to mice resulted in an enhanced bacterial load in various organs and was associated with higher mortality of intranasally infected mice. The unfavorable outcome of B. pseudomallei infection after HO-1 induction was associated with higher serum IL-6, TNF-α, and MCP-1 levels but decreased secretion of IFN-γ. Finally, we demonstrate that the CO-releasing molecule CORM-2 increases the B. pseudomallei load in macrophages and mice. Thus, our data suggest that the B. pseudomallei-mediated induction of HO-1 and the release of its metabolite CO impair bacterial clearance in macrophages and during murine melioidosis.


Asunto(s)
Monóxido de Carbono/metabolismo , Hemo-Oxigenasa 1/biosíntesis , Macrófagos/metabolismo , Macrófagos/microbiología , Melioidosis/metabolismo , Animales , Western Blotting , Burkholderia pseudomallei , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Melioidosis/patología , Ratones , Ratones Endogámicos C57BL , Compuestos Organometálicos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
J Proteomics ; 103: 72-86, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24704164

RESUMEN

Macrophages are essential components of the innate immune system and crucial for pathogen elimination in early stages of infection. We previously observed that bone marrow-derived macrophages (BMMs) from C57BL/6 mice exhibited increased killing activity against Burkholderia pseudomallei compared to BMMs from BALB/c mice. This effect was particularly pronounced when cells were treated with IFN-γ. To unravel mechanisms that could explain these distinct bactericidal effects, a comparative combined proteome and transcriptome analysis of untreated and IFN-γ treated BALB/c and C57BL/6 BMMs under standardized serum-free conditions was carried out. We found differences in gene expression/protein abundance belonging to cellular oxidative and antioxidative stress systems. Genes/proteins involved in the generation of oxidant molecules and the function of phagosomes (respiratory chain ATPase, lysosomal enzymes, cathepsins) were predominantly higher expressed/more abundant in C57BL/6 BMMs. Components involved in alleviation of oxidative stress (peroxiredoxin, mitochondrial superoxide dismutase) were more abundant in C57BL/6 BMMs as well. Thus, C57BL/6 BMMs seemed to be better equipped with cellular systems that may be advantageous in combating engulfed pathogens. Simultaneously, C57BL/6 BMMs were well protected from oxidative burst. We assume that these variations co-determine differences in resistance between BALB/c and C57BL/6 mice observed in many infection models. BIOLOGICAL SIGNIFICANCE: In this study we performed combined transcriptome and proteome analyses on BMMs derived from two inbred mouse strains that are frequently used for studies in the field of host-pathogen interaction research. Strain differences between BALB/c and C57BL/6 BMMs were found to originate mainly from different protein abundance levels rather than from different gene expression. Differences in abundance of respiratory chain complexes and lysosomal proteins as well as differential regulation of components belonging to various antioxidant stress systems help to explain long-known differences between the mouse strains concerning their different susceptibility in several infection models.


Asunto(s)
Interferón gamma/farmacología , Macrófagos/metabolismo , Animales , Antioxidantes/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Burkholderia pseudomallei/efectos de los fármacos , Transporte de Electrón , Macrófagos/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteoma , Transcriptoma
7.
Infect Immun ; 82(5): 2006-15, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24595140

RESUMEN

Burkholderia pseudomallei is a Gram-negative rod and the causative agent of melioidosis, an emerging infectious disease of tropical and subtropical areas worldwide. B. pseudomallei harbors a remarkable number of virulence factors, including six type VI secretion systems (T6SS). Using our previously described plaque assay screening system, we identified a B. pseudomallei transposon mutant defective in the BPSS1504 gene that showed reduced plaque formation. The BPSS1504 locus is encoded within T6SS cluster 1 (T6SS1), which is known to be involved in the pathogenesis of B. pseudomallei in mammalian hosts. For further analysis, a B. pseudomallei BPSS1504 deletion (BpΔBPSS1504) mutant and complemented mutant strain were constructed. B. pseudomallei lacking the BPSS1504 gene was highly attenuated in BALB/c mice, whereas the in vivo virulence of the complemented mutant strain was fully restored to the wild-type level. The BpΔBPSS1504 mutant showed impaired intracellular replication and formation of multinucleated giant cells in macrophages compared with wild-type bacteria, whereas the induction of actin tail formation within host cells was not affected. These observations resembled the phenotype of a mutant lacking hcp1, which is an integral component of the T6SS1 apparatus and is associated with full functionality of the T6SS1. Transcriptional expression of the T6SS components vgrG, tssA, and hcp1, as well as the T6SS regulators virAG, bprC, and bsaN, was not dependent on BPSS1504 expression. However, secretion of Hcp1 was not detectable in the absence of BPSS1504. Thus, BPSS1504 seems to serve as a T6SS component that affects Hcp1 secretion and is therefore involved in the integrity of the T6SS1 apparatus.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/patogenicidad , Regulación Bacteriana de la Expresión Génica/fisiología , Melioidosis/microbiología , Actinas/metabolismo , Animales , Proteínas Bacterianas/genética , Burkholderia pseudomallei/genética , Femenino , Melioidosis/inmunología , Ratones , Ratones Endogámicos BALB C , Mutación , Organismos Libres de Patógenos Específicos , Virulencia , Factores de Virulencia
8.
PLoS Pathog ; 10(3): e1003986, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24626296

RESUMEN

The cytosolic pathogen Burkholderia pseudomallei and causative agent of melioidosis has been shown to regulate IL-1ß and IL-18 production through NOD-like receptor NLRP3 and pyroptosis via NLRC4. Downstream signalling pathways of those receptors and other cell death mechanisms induced during B. pseudomallei infection have not been addressed so far in detail. Furthermore, the role of B. pseudomallei factors in inflammasome activation is still ill defined. In the present study we show that caspase-1 processing and pyroptosis is exclusively dependent on NLRC4, but not on NLRP3 in the early phase of macrophage infection, whereas at later time points caspase-1 activation and cell death is NLRC4- independent. In the early phase we identified an activation pathway involving caspases-9, -7 and PARP downstream of NLRC4 and caspase-1. Analyses of caspase-1/11-deficient infected macrophages revealed a strong induction of apoptosis, which is dependent on activation of apoptotic initiator and effector caspases. The early activation pathway of caspase-1 in macrophages was markedly reduced or completely abolished after infection with a B. pseudomallei flagellin FliC or a T3SS3 BsaU mutant. Studies using cells transfected with the wild-type and mutated T3SS3 effector protein BopE indicated also a role of this protein in caspase-1 processing. A T3SS3 inner rod protein BsaK mutant failed to activate caspase-1, revealed higher intracellular counts, reduced cell death and IL-1ß secretion during early but not during late macrophage infection compared to the wild-type. Intranasal infection of BALB/c mice with the BsaK mutant displayed a strongly decreased mortality, lower bacterial loads in organs, and reduced levels of IL-1ß, myeloperoxidase and neutrophils in bronchoalveolar lavage fluid. In conclusion, our results indicate a major role for a functional T3SS3 in early NLRC4-mediated caspase-1 activation and pyroptosis and a contribution of late caspase-1-dependent and -independent cell death mechanisms in the pathogenesis of B. pseudomallei infection.


Asunto(s)
Infecciones por Burkholderia/inmunología , Burkholderia pseudomallei/inmunología , Inflamasomas/inmunología , Macrófagos/microbiología , Transducción de Señal/inmunología , Animales , Sistemas de Secreción Bacterianos/fisiología , Western Blotting , Infecciones por Burkholderia/metabolismo , Burkholderia pseudomallei/metabolismo , Caspasa 1/metabolismo , Muerte Celular/fisiología , Modelos Animales de Enfermedad , Citometría de Flujo , Células HEK293 , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Transfección
9.
PLoS Negl Trop Dis ; 7(10): e2500, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24147174

RESUMEN

BACKGROUND: Burkholderia pseudomallei infection (melioidosis) is an important cause of community-acquired Gram-negative sepsis in Northeast Thailand, where it is associated with a ~40% mortality rate despite antimicrobial chemotherapy. We showed in a previous cohort study that patients taking glyburide ( = glibenclamide) prior to admission have lower mortality and attenuated inflammatory responses compared to patients not taking glyburide. We sought to define the mechanism underlying this observation in a murine model of melioidosis. METHODS: Mice (C57BL/6) with streptozocin-induced diabetes were inoculated with ~6 × 10(2) cfu B. pseudomallei intranasally, then treated with therapeutic ceftazidime (600 mg/kg intraperitoneally twice daily starting 24 h after inoculation) in order to mimic the clinical scenario. Glyburide (50 mg/kg) or vehicle was started 7 d before inoculation and continued until sacrifice. The minimum inhibitory concentration of glyburide for B. pseudomallei was determined by broth microdilution. We also examined the effect of glyburide on interleukin (IL) 1ß by bone-marrow-derived macrophages (BMDM). RESULTS: Diabetic mice had increased susceptibility to melioidosis, with increased bacterial dissemination but no effect was seen of diabetes on inflammation compared to non-diabetic controls. Glyburide treatment did not affect glucose levels but was associated with reduced pulmonary cellular influx, reduced bacterial dissemination to both liver and spleen and reduced IL1ß production when compared to untreated controls. Other cytokines were not different in glyburide-treated animals. There was no direct effect of glyburide on B. pseudomallei growth in vitro or in vivo. Glyburide directly reduced the secretion of IL1ß by BMDMs in a dose-dependent fashion. CONCLUSIONS: Diabetes increases the susceptibility to melioidosis. We further show, for the first time in any model of sepsis, that glyburide acts as an anti-inflammatory agent by reducing IL1ß secretion accompanied by diminished cellular influx and reduced bacterial dissemination to distant organs. We found no evidence for a direct effect of glyburide on the bacterium.


Asunto(s)
Antiinflamatorios/uso terapéutico , Burkholderia pseudomallei/efectos de los fármacos , Gliburida/uso terapéutico , Melioidosis/tratamiento farmacológico , Sepsis/tratamiento farmacológico , Animales , Antibacterianos/uso terapéutico , Ceftazidima/uso terapéutico , Complicaciones de la Diabetes , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Resultado del Tratamiento
10.
Microbes Infect ; 13(11): 914-22, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21635963

RESUMEN

Staphylococcus aureus is a pathogen that often causes severe nosocomial infections including pneumonia. The present study was designed to examine innate phagocyte mediated immune mechanisms using a previously described murine S. aureus Newman pneumonia model. We found that BALB/c mice represent a more susceptible mouse strain compared to C57BL/6 mice after intranasal S. aureus Newman challenge. Depletion experiments revealed that neutrophils are a crucial determinant for resistance whereas depletion of alveolar macrophages protected mice to some degree from acute pulmonary S. aureus challenge. C57BL/6 mice lacking the subunit gp91phox of the NADPH-oxidase (gp91phox⁻/⁻ mice) proved to be highly susceptible against the pathogen. In contrast, C57BL/6 inducible nitric oxidase synthase deficient (iNOS⁻/⁻) mice did not differ in their clinical outcome after infection. Neither bone marrow macrophages from iNOS-/- nor from gp91phox⁻/⁻ mice were impaired in controlling intracellular persistence of S. aureus. Our data suggest that neutrophil and NADPH-oxidase mediated mechanisms are essential components in protecting the host against pulmonary S. aureus Newman challenge. On contrary, macrophages as well as NO mediated mechanisms do not seem to play a critical role for resistance in this model.


Asunto(s)
NADPH Oxidasas/inmunología , Óxido Nítrico Sintasa de Tipo II/inmunología , Neumonía Estafilocócica/inmunología , Staphylococcus aureus/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Enfermedades de los Roedores/inmunología
11.
Free Radic Biol Med ; 51(3): 626-40, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21651978

RESUMEN

Peroxiredoxin 6 (Prx 6) is a bifunctional enzyme with both glutathione peroxidase and acidic Ca(2+)-independent phospholipase A(2) activities. We have recently shown that exposure of murine bone marrow-derived macrophages to LPS and IFN-γ leads to induction of COX-2 expression and secretion of PGE(2), up-regulating Prx 6 mRNA levels. This study was designed to investigate various prostaglandins (PGs) for their ability to induce gene expression of Prxs, in particular Prx 6, and to determine the underlying regulatory mechanisms. We provide evidence that both conventional and cyclopentenone PGs enhance Prx 6 mRNA expression. Treatment with either activators or inhibitors of adenylate cyclase as well as cAMP analogs indicated that Prx 6 gene expression is regulated by adenylate cyclase in response to PGD(2) or PGE(2). Furthermore, our study revealed that JAK2, PI3K, PKC, and p38 MAPK contribute to the PGD(2)- or PGE(2)-dependent Prx 6 induction. Using stimulated macrophages from Nrf2-deficient mice or activators of Nrf2 and PPARγ, we found that Nrf2, but not PPARγ, is involved in the PG-dependent increase in Prx 6 mRNA expression. In summary, our data suggest multiple signaling pathways of Prx 6 regulation by PGs and identified Nrf2 as a critical player mediating transcriptional induction.


Asunto(s)
Dinoprostona/metabolismo , Macrófagos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Peroxiredoxina VI/metabolismo , Prostaglandina D2/metabolismo , Adenilil Ciclasas/metabolismo , Animales , Células Cultivadas , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Dinoprostona/genética , Regulación de la Expresión Génica/efectos de los fármacos , Janus Quinasa 2/metabolismo , Sistema de Señalización de MAP Quinasas , Macrófagos/efectos de los fármacos , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Peroxiredoxina VI/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Prostaglandina D2/genética , Proteína Quinasa C/metabolismo , Activación Transcripcional/genética
12.
Front Microbiol ; 2: 277, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22291688

RESUMEN

The Gram-negative facultative intracellular rod Burkholderia pseudomallei causes melioidosis, an infectious disease with a wide range of clinical presentations. Among the observed visceral abscesses, the liver is commonly affected. However, neither this organotropism of B. pseudomallei nor local hepatic defense mechanisms have been thoroughly investigated so far. Own previous studies using electron microscopy of the murine liver after systemic infection of mice indicated that hepatocytes might be capable of killing B. pseudomallei. Therefore, the aim of this study was to further elucidate the interaction of B. pseudomallei with these cells and to analyze the role of hepatocytes in anti-B. pseudomallei host defense. In vitro studies using the human hepatocyte cell line HepG2 revealed that B. pseudomallei can invade these cells. Subsequently, B. pseudomallei is able to escape from the vacuole, to replicate within the cytosol of HepG2 cells involving its type 3 and type 6 secretion systems, and to induce actin tail formation. Furthermore, stimulation of HepG2 cells showed that IFNγ can restrict growth of B. pseudomallei in the early and late phase of infection whereas the combination of IFNγ, IL-1ß, and TNFα is required for the maximal antibacterial activity. This anti-B. pseudomallei defense of HepG2 cells did not seem to be mediated by inducible nitric oxide synthase-derived nitric oxide or NADPH oxidase-derived superoxide. In summary, this is the first study describing B. pseudomallei intracellular life cycle characteristics in hepatocytes and showing that IFNγ-mediated, but nitric oxide- and reactive oxygen species-independent, effector mechanisms are important in anti-B. pseudomallei host defense of hepatocytes.

13.
J Endocrinol ; 207(2): 163-75, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20807727

RESUMEN

Type 1 diabetes mellitus is characterized by a progressive autoimmune destruction of insulin-producing ß cells. Macrophages and T lymphocytes release cytokines, which induce the synthesis of oxygen and nitrogen radicals in the pancreatic islets. The resulting cellular and mitochondrial damage promotes ß cell death. ß cells are very sensitive to the autoimmune free radical-dependent attack due to their low content of antioxidant enzymes such as glutathione peroxidase and catalase. A focal point of ß cell protection should be the control of the mitochondrial redox status, which will result in the preservation of metabolic stimulus-secretion coupling. For this reason, there is a considerable interest in the mitochondrial peroxiredoxin III (PRX III), a thioredoxin-dependent peroxide reductase, which was shown to be able to protect against both oxidative and nitrosative stress. Using the Tet-On-system, we generated stably transfected rat insulinoma cells over- or under-expressing PRX III in a doxycyclin-dependent manner to analyze the effect of increased or decreased amounts of cellular PRX III, following treatment with several stressors. We provide evidence that PRX III protects pancreatic ß cells from cell stress induced by accumulation of hydrogen peroxide, or the induction of inducible nitric oxide synthase or caspase-9 and -3 by pro-inflammatory cytokines or streptozotocin. Basal insulin secretion was markedly decreased in cells expressing lower levels of PRX III. We suggest PRX III may be a suitable target for promoting deceleration or even prevention of stress-associated apoptosis in pancreatic ß cells and the manifestation of insulin-dependent diabetes mellitus.


Asunto(s)
Apoptosis/fisiología , Regulación de la Expresión Génica/fisiología , Células Secretoras de Insulina/fisiología , Peroxirredoxinas/metabolismo , Animales , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular , Citocinas , Femenino , Peróxido de Hidrógeno/metabolismo , Insulinoma , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/metabolismo , Páncreas/metabolismo , Peroxirredoxinas/genética , Ratas , Estreptozocina
14.
Free Radic Biol Med ; 49(12): 1881-91, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20869433

RESUMEN

Peroxiredoxins (Prxs) are a family of multifunctional antioxidant thiol-dependent peroxidases. This study aimed to examine the regulatory mechanisms of Prx gene expression in murine bone marrow-derived macrophages (BMMs) using standardized serum-free conditions. Stimulation with LPS and IFNγ increased mRNA levels of Prx 1, 2, 4, 5, and 6 in BMMs of both C57BL/6 and BALB/c mice, with Prx 1, 2, 4, and 6 more strongly induced in C57BL/6 BMMs. Further investigations on signaling pathways in C57BL/6 BMMs demonstrated that up-regulation of Prx 5 and 6 by LPS and IFNγ was associated with the activation of multiple protein kinases, most notably JAK2, PI3K, and p38 MAPK. Our experiments also revealed a contribution of inducible NO synthase-derived nitric oxide to the increase in Prx 1, 2, 4, and 6 mRNA expression, whereas NADPH oxidase-derived superoxide was not involved. Furthermore, we could show that LPS- and IFNγ-induced gene expression of Prx 6 was also regulated in an NO-independent manner by cyclooxygenases and prostaglandin E(2). Taken together our results indicate a possible role for Prxs in defense mechanisms of activated macrophages against oxidative stress during inflammation or infection.


Asunto(s)
Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Peroxiredoxina VI/genética , Peroxirredoxinas/genética , Animales , Dinoprostona/metabolismo , Activación Enzimática , Interferón gamma/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Peroxiredoxina VI/metabolismo , Peroxirredoxinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba
15.
Biochim Biophys Acta ; 1799(5-6): 402-10, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19941984

RESUMEN

Peroxiredoxin I (Prx I) belongs to a family of proteins with thiol-dependent peroxidase activity and is involved in the cellular protection against oxidative stress, the modulation of intracellular signalling cascades as well as the regulation of cell proliferation and apoptosis. In RAW 264.7 mouse macrophage cells Prx I was up-regulated on the mRNA and protein level by lipopolysaccharide (LPS). Treatment of cells with LPS increased the phosphorylation of c-Jun-NH(2) terminal kinase (JNK) and protein kinase B (PKB). Both SP600125, an inhibitor of JNK, and LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), dose-dependently decreased LPS-induced Prx I mRNA expression. Furthermore, up-regulation of Prx I mRNA by LPS was diminished by the Src tyrosine kinase inhibitor PP2 and the iNOS inhibitor L-NMMA. LPS-dependent induction of Prx I is likely mediated by an activator protein-1 site within the Prx I promoter region binding JunB and c-Fos. In contrast, NFkappaB was not involved in the activation of Prx I transcription. Our results suggest that the up-regulation of Prx I gene expression by LPS is part of the cellular response to stress and may protect against oxidative stress-related injury in RAW 264.7 cells.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Familia-src Quinasas/metabolismo , Animales , Secuencia de Bases , Unión Competitiva , Línea Celular , Cartilla de ADN/genética , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...