Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Mol Med ; 50(6): 1-17, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29959317

RESUMEN

Ciliopathies comprise a large number of hereditary human diseases and syndromes caused by mutations resulting in dysfunction of either primary or motile cilia. Both types of cilia share a similar architecture. While primary cilia are present on most cell types, expression of motile cilia is limited to specialized tissues utilizing ciliary motility. We characterized protein complexes of ciliopathy proteins and identified the conserved AAA-ATPase Ruvbl1 as a common novel component. Here, we demonstrate that Ruvbl1 is crucial for the development and maintenance of renal tubular epithelium in mice: both constitutive and inducible deletion in tubular epithelial cells result in renal failure with tubular dilatations and fewer ciliated cells. Moreover, inducible deletion of Ruvbl1 in cells carrying motile cilia results in hydrocephalus, suggesting functional relevance in both primary and motile cilia. Cilia of Ruvbl1-negative cells lack crucial proteins, consistent with the concept of Ruvbl1-dependent cytoplasmic pre-assembly of ciliary protein complexes.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/deficiencia , Ciliopatías , ADN Helicasas/deficiencia , Eliminación de Gen , Hidrocefalia , Enfermedades Renales , Animales , Cilios/genética , Cilios/metabolismo , Ciliopatías/genética , Ciliopatías/metabolismo , Ciliopatías/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Ratones , Ratones Transgénicos
2.
Hum Mol Genet ; 22(21): 4383-97, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23784378

RESUMEN

Birt-Hogg-Dubé (BHD) syndrome is an autosomal dominant disorder where patients are predisposed to kidney cancer, lung and kidney cysts and benign skin tumors. BHD is caused by heterozygous mutations affecting folliculin (FLCN), a conserved protein that is considered a tumor suppressor. Previous research has uncovered multiple roles for FLCN in cellular physiology, yet it remains unclear how these translate to BHD lesions. Since BHD manifests hallmark characteristics of ciliopathies, we speculated that FLCN might also have a ciliary role. Our data indicate that FLCN localizes to motile and non-motile cilia, centrosomes and the mitotic spindle. Alteration of FLCN levels can cause changes to the onset of ciliogenesis, without abrogating it. In three-dimensional culture, abnormal expression of FLCN disrupts polarized growth of kidney cells and deregulates canonical Wnt signalling. Our findings further suggest that BHD-causing FLCN mutants may retain partial functionality. Thus, several BHD symptoms may be due to abnormal levels of FLCN rather than its complete loss and accordingly, we show expression of mutant FLCN in a BHD-associated renal carcinoma. We propose that BHD is a novel ciliopathy, its symptoms at least partly due to abnormal ciliogenesis and canonical Wnt signalling.


Asunto(s)
Síndrome de Birt-Hogg-Dubé/fisiopatología , Cilios/fisiología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Bases , Síndrome de Birt-Hogg-Dubé/genética , Línea Celular , Polaridad Celular , Proliferación Celular , Centrosoma/fisiología , Cilios/patología , Humanos , Riñón/fisiología , Microtúbulos/fisiología , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Vía de Señalización Wnt
3.
Cilia ; 2(1): 6, 2013 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-23628112

RESUMEN

Dysfunctional cilia underlie a broad range of cellular and tissue phenotypes and can eventually result in the development of ciliopathies: pathologically diverse diseases that range from clinically mild to highly complex and severe multi-organ failure syndromes incompatible with neonatal life. Given that virtually all cells of the human body have the capacity to generate cilia, it is likely that clinical manifestations attributed to ciliary dysfunction will increase in the years to come. Disputed but nevertheless enigmatic is the notion that at least a subset of tumor phenotypes fit within the ciliopathy disease spectrum and that cilia loss may be required for tumor progression. Contending for the centrosome renders ciliation and cell division mutually exclusive; a regulated tipping of balance promotes either process. The mechanisms involved, however, are complex. If the hypothesis that tumorigenesis results from dysfunctional cilia is true, then why do the classic ciliopathies only show limited hyperplasia at best? Although disassembly of the cilium is a prerequisite for cell proliferation, it does not intrinsically drive tumorigenesis per se. Alternatively, we will explore the emerging evidence suggesting that some tumors depend on ciliary signaling. After reviewing the structure, genesis and signaling of cilia, the various ciliopathy syndromes and their genetics, we discuss the current debate of tumorigenesis as a ciliopathy spectrum defect, and describe recent advances in this fascinating field.

4.
PLoS Genet ; 9(4): e1003384, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23599692

RESUMEN

Seminoma is a subclass of human testicular germ cell tumors (TGCT), the most frequently observed cancer in young men with a rising incidence. Here we describe the identification of a novel gene predisposing specifically to seminoma formation in a vertebrate model organism. Zebrafish carrying a heterozygous nonsense mutation in Leucine-Rich Repeat Containing protein 50 (lrrc50 also called dnaaf1), associated previously with ciliary function, are found to be highly susceptible to the formation of seminomas. Genotyping of these zebrafish tumors shows loss of heterozygosity (LOH) of the wild-type lrrc50 allele in 44.4% of tumor samples, correlating with tumor progression. In humans we identified heterozygous germline LRRC50 mutations in two different pedigrees with a family history of seminomas, resulting in a nonsense Arg488* change and a missense Thr590Met change, which show reduced expression of the wild-type allele in seminomas. Zebrafish in vivo complementation studies indicate the Thr590Met to be a loss-of-function mutation. Moreover, we show that a pathogenic Gln307Glu change is significantly enriched in individuals with seminoma tumors (13% of our cohort). Together, our study introduces an animal model for seminoma and suggests LRRC50 to be a novel tumor suppressor implicated in human seminoma pathogenesis.


Asunto(s)
Seminoma , Pez Cebra , Animales , Genes Supresores de Tumor , Genotipo , Humanos , Mutación , Pez Cebra/genética
5.
Cilia ; 2(1): 2, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23369289

RESUMEN

BACKGROUND: Cilia are essential organelles in multiple organ systems, including the kidney where they serve as important regulators of renal homeostasis. Renal nephron cilia emanate from the apical membrane of epithelia, extending into the lumen where they function in flow-sensing and ligand-dependent signaling cascades. Ciliary dysfunction underlies renal cyst formation that is in part caused by deregulation of planar cell polarity and canonical Wnt signaling. Renal cancer pathologies occur sporadically or in heritable syndromes caused by germline mutations in tumor suppressor genes including VHL. Importantly, Von Hippel-Lindau (VHL) patients frequently develop complex renal cysts that can be considered a premalignant stage. One of the well-characterized molecular functions of VHL is its requirement for the maintenance of cilia. In this study, tissue from 110 renal cancer patients who underwent nephrectomy was analyzed to determine if lower ciliary frequency is a common hallmark of renal tumorigenesis by comparing cilia frequencies in both tumor and adjacent parenchymal tissue biopsies from the same kidney. METHODS: We stained sections of human renal material using markers for cilia. Preliminary staining was performed using an immunofluorescent approach and a combination of acetylated-α-tubulin and pericentrin antibodies and DAPI. After validation of an alternative, higher throughput approach using acetylated-α-tubulin immunohistochemistry, we continued to manually quantify cilia in all tissues. Nuclei were separately counted in an automated fashion in order to determine ciliary frequencies. Similar staining and scoring for Ki67 positive cells was performed to exclude that proliferation obscures cilia formation potential. RESULTS: Samples from renal cell carcinoma patients deposited in our hospital tissue bank were previously used to compose a tissue microarray containing three cores of both tumor and parenchymal tissue per patient. Cilia frequencies in a total of eighty-nine clear cell, eight papillary, five chromophobe renal cell carcinomas, two sarcomatoid renal tumors and six oncocytomas were determined. A marked decrease of primary cilia across renal cell carcinoma subtypes was observed compared to adjacent nontumorigenic tissue. CONCLUSIONS: Our study shows that cilia are predominantly lost in renal cell carcinomas compared to tissue of the tumor parenchyma. These results suggest that ciliary loss is common in renal tumorigenesis, possibly participating in the sequence of cellular events leading to malignant tumor development. Future therapies aimed at restoring or circumventing cilia signaling might therefore aid in current treatment efficacy.

6.
Cytoskeleton (Hoboken) ; 68(2): 112-24, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21246755

RESUMEN

Cytokinesis and ciliogenesis are fundamental cellular processes that require strict coordination of microtubule organization and directed membrane trafficking. These processes have been intensely studied, but there has been little indication that regulatory machinery might be extensively shared between them. Here, we show that several central spindle/midbody proteins (PRC1, MKLP-1, INCENP, centriolin) also localize in specific patterns at the basal body complex in vertebrate ciliated epithelial cells. Moreover, bioinformatic comparisons of midbody and cilia proteomes reveal a highly significant degree of overlap. Finally, we used temperature-sensitive alleles of PRC1/spd-1 and MKLP-1/zen-4 in C. elegans to assess ciliary functions while bypassing these proteins' early role in cell division. These mutants displayed defects in both cilia function and cilia morphology. Together, these data suggest the conserved reuse of a surprisingly large number of proteins in the cytokinetic apparatus and in cilia.


Asunto(s)
Cilios/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cilios/genética , Larva , Proteínas Asociadas a Microtúbulos/genética , Mutación , Proteínas de Xenopus/genética , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...