Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Dev Cell ; 52(1): 88-103.e18, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31910362

RESUMEN

After axon outgrowth and synapse formation, the nervous system transitions to a stable architecture. In C. elegans, this transition is marked by the appearance of casein kinase 1δ (CK1δ) in the nucleus. In CK1δ mutants, neurons continue to sprout growth cones into adulthood, leading to a highly ramified nervous system. Nervous system architecture in these mutants is completely restored by suppressor mutations in ten genes involved in transcription termination. CK1δ prevents termination by phosphorylating and inhibiting SSUP-72. SSUP-72 would normally remodel the C-terminal domain of RNA polymerase in anticipation of termination. The antitermination activity of CK1δ establishes the mature state of a neuron by promoting the expression of the long isoform of a single gene, the cytoskeleton protein Ankyrin.


Asunto(s)
Ancirinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Quinasa Idelta de la Caseína/metabolismo , Núcleo Celular/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Transcripción Genética , Animales , Ancirinas/genética , Axones/fisiología , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Quinasa Idelta de la Caseína/genética , Núcleo Celular/genética , Fosfoproteínas Fosfatasas/genética , Sinapsis/fisiología
3.
Nat Commun ; 7: 10388, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26790951

RESUMEN

The molecular mechanisms underlying the ability of axons to regenerate after injury remain poorly understood. Here we show that in Caenorhabditis elegans, axotomy induces ectopic expression of serotonin (5-HT) in axotomized non-serotonergic neurons via HIF-1, a hypoxia-inducible transcription factor, and that 5-HT subsequently promotes axon regeneration by autocrine signalling through the SER-7 5-HT receptor. Furthermore, we identify the rhgf-1 and rga-5 genes, encoding homologues of RhoGEF and RhoGAP, respectively, as regulators of axon regeneration. We demonstrate that one pathway initiated by SER-7 acts upstream of the C. elegans RhoA homolog RHO-1 in neuron regeneration, which functions via G12α and RHGF-1. In this pathway, RHO-1 inhibits diacylglycerol kinase, resulting in an increase in diacylglycerol. SER-7 also promotes axon regeneration by activating the cyclic AMP (cAMP) signalling pathway. Thus, HIF-1-mediated activation of 5-HT signalling promotes axon regeneration by activating both the RhoA and cAMP pathways.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regeneración Nerviosa , Enfermedades Neurodegenerativas/metabolismo , Serotonina/metabolismo , Factores de Transcripción/metabolismo , Animales , Axotomía , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/metabolismo , Transducción de Señal , Factores de Transcripción/genética
4.
J Neurosci ; 34(2): 629-45, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24403161

RESUMEN

Axons of the mammalian CNS lose the ability to regenerate soon after development due to both an inhibitory CNS environment and the loss of cell-intrinsic factors necessary for regeneration. The complex molecular events required for robust regeneration of mature neurons are not fully understood, particularly in vivo. To identify genes affecting axon regeneration in Caenorhabditis elegans, we performed both an RNAi-based screen for defective motor axon regeneration in unc-70/ß-spectrin mutants and a candidate gene screen. From these screens, we identified at least 50 conserved genes with growth-promoting or growth-inhibiting functions. Through our analysis of mutants, we shed new light on certain aspects of regeneration, including the role of ß-spectrin and membrane dynamics, the antagonistic activity of MAP kinase signaling pathways, and the role of stress in promoting axon regeneration. Many gene candidates had not previously been associated with axon regeneration and implicate new pathways of interest for therapeutic intervention.


Asunto(s)
Axones/fisiología , Caenorhabditis elegans/genética , Regeneración Nerviosa/genética , Transducción de Señal/fisiología , Animales , ARN Interferente Pequeño
6.
Nat Commun ; 3: 1136, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23072806

RESUMEN

The ability of neurons to regenerate their axons after injury is determined by a balance between cellular pathways that promote and those that inhibit regeneration. In Caenorhabditis elegans, axon regeneration is positively regulated by the c-Jun N-terminal kinase mitogen activated protein kinase pathway, which is activated by growth factor-receptor tyrosine kinase signalling. Here we show that fatty acid amide hydrolase-1, an enzyme involved in the degradation of the endocannabinoid anandamide (arachidonoyl ethanolamide), regulates the axon regeneration response of γ-aminobutyric acid neurons after laser axotomy. Exogenous arachidonoyl ethanolamide inhibits axon regeneration via the Goα subunit GOA-1, which antagonizes the Gqα subunit EGL-30. We further demonstrate that protein kinase C functions downstream of Gqα and activates the MLK-1-MEK-1-KGB-1 c-Jun N-terminal kinase pathway by phosphorylating MLK-1. Our results show that arachidonoyl ethanolamide induction of a G protein signal transduction pathway has a role in the inhibition of post-development axon regeneration.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Endocannabinoides/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Sistema de Señalización de MAP Quinasas , Regeneración Nerviosa/fisiología , Proteínas Tirosina Quinasas/metabolismo , Amidohidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Ácidos Araquidónicos/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Genes de Helminto/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasas Quinasa Quinasa PAM/química , Quinasas Quinasa Quinasa PAM/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Alcamidas Poliinsaturadas/metabolismo
7.
Neuron ; 74(6): 961-3, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-22726825

RESUMEN

In this issue of Neuron, Shin et al. (2012) show that the dual leucine zipper kinase (DLK) is responsible for the retrograde injury signal in spinal sensory and motor neurons. DLK is required for the accelerated regeneration seen after axotomy and for the improved regeneration seen after a conditioning injury. DLK KO axons have severely reduced axon regeneration in vivo.


Asunto(s)
Transporte Axonal/fisiología , Axones/fisiología , Quinasas Quinasa Quinasa PAM/metabolismo , Neuronas Motoras/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Transducción de Señal/fisiología , Animales
8.
Nat Neurosci ; 15(4): 551-7, 2012 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-22388962

RESUMEN

The ability of neurons to undergo regenerative growth after injury is governed by cell-intrinsic and cell-extrinsic regeneration pathways. These pathways represent potential targets for therapies to enhance regeneration. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, the Jun N-terminal kinase (JNK) and p38 MAP kinase (MAPK) pathways are important for axon regeneration. We found that the C. elegans SVH-1 growth factor and its receptor, SVH-2 tyrosine kinase, regulate axon regeneration. Loss of SVH-1-SVH-2 signaling resulted in a substantial defect in the ability of neurons to regenerate, whereas its activation improved regeneration. Furthermore, SVH-1-SVH-2 signaling was initiated extrinsically by a pair of sensory neurons and functioned upstream of the JNK-MAPK pathway. Thus, SVH-1-SVH-2 signaling via activation of the MAPK pathway acts to coordinate neuron regeneration response after axon injury.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Regeneración Nerviosa/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Axones/enzimología , Caenorhabditis elegans , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Datos de Secuencia Molecular
9.
J Vis Exp ; (57)2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22126922

RESUMEN

Laser axotomy followed by time-lapse microscopy is a sensitive assay for axon regeneration phenotypes in C. elegans(1). The main difficulty of this assay is the perceived cost ($25-100K) and technical expertise required for implementing a laser ablation system(2,3). However, solid-state pulse lasers of modest costs (<$10K) can provide robust performance for laser ablation in transparent preparations where target axons are "close" to the tissue surface. Construction and alignment of a system can be accomplished in a day. The optical path provided by light from the focused condenser to the ablation laser provides a convenient alignment guide. An intermediate module with all optics removed can be dedicated to the ablation laser and assures that no optical elements need be moved during a laser ablation session. A dichroic in the intermediate module allows simultaneous imaging and laser ablation. Centering the laser beam to the outgoing beam from the focused microscope condenser lens guides the initial alignment of the system. A variety of lenses are used to condition and expand the laser beam to fill the back aperture of the chosen objective lens. Final alignment and testing is performed with a front surface mirrored glass slide target. Laser power is adjusted to give a minimum size ablation spot (<1 um). The ablation spot is centered with fine adjustments of the last kinematically mounted mirror to cross hairs fixed in the imaging window. Laser power for axotomy will be approximately 10X higher than needed for the minimum ablation spot on the target slide (this may vary with the target you use). Worms can be immobilized for laser axotomy and time-lapse imaging by mounting on agarose pads (or in microfluidic chambers(4)). Agarose pads are easily made with 10% agarose in balanced saline melted in a microwave. A drop of molten agarose is placed on a glass slide and flattened with another glass slide into a pad approximately 200 um thick (a single layer of time tape on adjacent slides is used as a spacer). A "Sharpie" cap is used to cut out a uniformed diameter circular pad of 13 mm. Anesthetic (1 ul Muscimol 20mM) and Microspheres (Chris Fang-Yen personal communication) (1 ul 2.65% Polystyrene 0.1 um in water) are added to the center of the pad followed by 3-5 worms oriented so they are lying on their left sides. A glass coverslip is applied and then Vaseline is used to seal the coverslip and prevent evaporation of the sample.


Asunto(s)
Axones/fisiología , Axotomía/instrumentación , Axotomía/métodos , Caenorhabditis elegans/fisiología , Terapia por Láser/instrumentación , Terapia por Láser/métodos , Regeneración Nerviosa/fisiología , Animales , Axotomía/economía , Femenino , Terapia por Láser/economía , Masculino
10.
Genetics ; 189(3): 885-97, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21868609

RESUMEN

The acquisition and maintenance of shape is critical for the normal function of most cells. Here we investigate the morphology of the pharyngeal glands of Caenorhabditis elegans. These unicellular glands have long cellular processes that extend discrete lengths through the pharyngeal musculature and terminate at ducts connected to the pharyngeal lumen. From a genetic screen we identified several mutants that affect pharyngeal gland morphology. The most severe such mutant is an allele of sma-1, which encodes a ß-spectrin required for embryonic elongation, including elongation of the pharynx. In sma-1 mutants, gland projections form normally but become increasingly abnormal over time, acquiring additional branches, outgrowths, and swelling, suggestive of hypertrophy. Rather than acting in pharyngeal glands, sma-1 functions in the surrounding musculature, suggesting that pharyngeal muscles play a critical role in maintenance of gland morphology by restricting their growth, and analysis of other mutants known to affect pharyngeal muscles supports this hypothesis. We suggest that gland morphology is maintained by a balance of forces from the muscles and the glands.


Asunto(s)
Caenorhabditis elegans/citología , Células Musculares/citología , Músculos Faríngeos/citología , Alelos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/efectos de la radiación , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/genética , Análisis Mutacional de ADN , Regulación de la Expresión Génica/efectos de la radiación , Hipertrofia/genética , Rayos Láser/efectos adversos , Proteínas de la Membrana/genética , Modelos Biológicos , Células Musculares/metabolismo , Células Musculares/efectos de la radiación , Células Musculares/ultraestructura , Músculos Faríngeos/metabolismo , Músculos Faríngeos/patología , Músculos Faríngeos/efectos de la radiación
11.
Proc Natl Acad Sci U S A ; 108(26): 10738-43, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21670305

RESUMEN

Signaling pathways essential for axon regeneration, but not for neuron development or function, are particularly well suited targets for therapeutic intervention. We find that the parallel PMK-3(p38) and KGB-1(JNK) MAPK pathways must be coordinately activated to promote axon regeneration. Axon regeneration fails if the activity of either pathway is absent. These two MAPKs are coregulated by the E3 ubiquitin ligase RPM-1(Phr1) via targeted degradation of the MAPKKKs DLK-1 and MLK-1 and by the MAPK phosphatase VHP-1(MKP7), which negatively regulates both PMK-3(p38) and KGB-1(JNK).


Asunto(s)
Axones , MAP Quinasa Quinasa 4/metabolismo , Regeneración Nerviosa , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN , Activación Enzimática , Transducción de Señal
12.
Nat Methods ; 7(6): 451-3, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20418868

RESUMEN

We developed a method, MosDEL, to generate targeted knockouts of genes in Caenorhabditis elegans by injection. We generated a double-strand break by mobilizing a Mos1 transposon adjacent to the region to be deleted; the double-stranded break is repaired using injected DNA as a template. Repair can delete up to 25 kb of DNA and simultaneously insert a positive selection marker.


Asunto(s)
Caenorhabditis elegans/genética , Elementos Transponibles de ADN/genética , Eliminación de Gen , Animales , Hibridación Genómica Comparativa , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Transposasas/fisiología
13.
Science ; 323(5915): 802-6, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19164707

RESUMEN

Regeneration of injured neurons can restore function, but most neurons regenerate poorly or not at all. The failure to regenerate in some cases is due to a lack of activation of cell-intrinsic regeneration pathways. These pathways might be targeted for the development of therapies that can restore neuron function after injury or disease. Here, we show that the DLK-1 mitogen-activated protein (MAP) kinase pathway is essential for regeneration in Caenorhabditis elegans motor neurons. Loss of this pathway eliminates regeneration, whereas activating it improves regeneration. Further, these proteins also regulate the later step of growth cone migration. We conclude that after axon injury, activation of this MAP kinase cascade is required to switch the mature neuron from an aplastic state to a state capable of growth.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Neuronas Motoras/fisiología , Envejecimiento , Animales , Axones/ultraestructura , Axotomía , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Conos de Crecimiento/fisiología , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Mutación , Regeneración Nerviosa/fisiología , Interferencia de ARN , Ácido gamma-Aminobutírico/metabolismo
14.
J Mol Recognit ; 21(5): 313-23, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18570206

RESUMEN

Lazarillo, a glycoprotein involved in axon growth and guidance in the grasshopper embryo, is the only member of the lipocalin family that is attached to the cell surface by a GPI anchor. Recently, the study of Lazarillo homologous genes in Drosophila and mouse has revealed new functions in the regulation of lifespan, stress resistance and neurodegeneration. Here we report an analysis of biochemical properties of Lazarillo to gain insight into the molecular basis of its physiological function. Recombinant forms of the grasshopper protein were expressed in two different systems to test: (1) potential binding of several hydrophobic ligands; (2) protein-protein homophilic interactions; and (3) whether interaction with the function-blocking mAb 10E6 interferes with ligand binding. We tested 10 candidate ligands (retinoic acid, heme, bilirubin, biliverdin, ecdysterone, juvenile hormone, farnesol, arachidonic acid, linoleic acid and palmitic acid), and monitored binding using electrophoretic mobility shift, absorbance spectrum, and fluorimetry assays. Our work indicates binding to heme and retinoic acid, resulting in increased electrophoretic mobility, as well as to fatty acids, resulting in multimerization. Retinoic acid and fatty acids binding were confirmed by fluorescence titration, and heme binding was confirmed with absorbance spectrum assays. We demonstrate that Lazarillo oligomerizes in solution and can form clusters in the plasma membrane when expressed and GPI-anchored to the cell surface, however it is unable to mediate cell-cell adhesion. Finally, by ligand-mAb competition experiments we show that ligand-binding alone cannot be the key factor for Lazarillo to perform its function during axonal growth in the grasshopper embryo.


Asunto(s)
Proteínas de Insectos/metabolismo , Lipocalinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Animales , Bilirrubina/metabolismo , Biliverdina/metabolismo , Células Cultivadas , Dimerización , Drosophila , Escherichia coli , Ácidos Grasos/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Hemo/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/aislamiento & purificación , Lipocalinas/química , Lipocalinas/aislamiento & purificación , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/aislamiento & purificación , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes/aislamiento & purificación , Tretinoina/metabolismo
15.
Aging Cell ; 7(4): 506-15, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18419796

RESUMEN

Many nervous system pathologies are associated with increased levels of apolipoprotein D (ApoD), a lipocalin also expressed during normal development and aging. An ApoD homologous gene in Drosophila, Glial Lazarillo, regulates resistance to stress, and neurodegeneration in the aging brain. Here we study for the first time the protective potential of ApoD in a vertebrate model organism. Loss of mouse ApoD function increases the sensitivity to oxidative stress and the levels of brain lipid peroxidation, and impairs locomotor and learning abilities. Human ApoD overexpression in the mouse brain produces opposite effects, increasing survival and preventing the raise of brain lipid peroxides after oxidant treatment. These observations, together with its transcriptional up-regulation in the brain upon oxidative insult, identify ApoD as an acute response protein with a protective and therefore beneficial function mediated by the control of peroxidated lipids.


Asunto(s)
Apolipoproteínas D/metabolismo , Estrés Oxidativo , Envejecimiento/efectos de los fármacos , Animales , Apolipoproteínas D/genética , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Aprendizaje/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Lipocalinas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Sistema Nervioso/efectos de los fármacos , Sistema Nervioso/patología , Estrés Oxidativo/efectos de los fármacos , Paraquat/farmacología , Análisis de Supervivencia , Transgenes , Regulación hacia Arriba/efectos de los fármacos
16.
Dev Biol ; 313(1): 384-97, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18037397

RESUMEN

Growth cones are dynamic membrane structures that migrate to target tissue by rearranging their cytoskeleton in response to environmental cues. The lipid phosphatidylinositol (4,5) bisphosphate (PIP(2)) resides on the plasma membrane of all eukaryotic cells and is thought to be required for actin cytoskeleton rearrangements. Thus PIP(2) is likely to play a role during neuron development, but this has never been tested in vivo. In this study, we have characterized the PIP(2) synthesizing enzyme Type I PIP kinase (ppk-1) in Caenorhabditis elegans. PPK-1 is strongly expressed in the nervous system, and can localize to the plasma membrane. We show that PPK-1 purified from C. elegans can generate PIP(2)in vitro and that overexpression of the kinase causes an increase in PIP(2) levels in vivo. In developing neurons, PPK-1 overexpression leads to growth cones that become stalled, produce ectopic membrane projections, and branched axons. Once neurons are established, PPK-1 overexpression results in progressive membrane overgrowth and degeneration during adulthood. These data suggest that overexpression of the Type I PIP kinase inhibits growth cone collapse, and that regulation of PIP(2) levels in established neurons may be important to maintain structural integrity and prevent neuronal degeneration.


Asunto(s)
Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Conos de Crecimiento/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
17.
J Cell Biol ; 176(3): 269-75, 2007 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-17261846

RESUMEN

Axons and dendrites can withstand acute mechanical strain despite their small diameter. In this study, we demonstrate that beta-spectrin is required for the physical integrity of neuronal processes in the nematode Caenorhabditis elegans. Axons in beta-spectrin mutants spontaneously break. Breakage is caused by acute strain generated by movement because breakage can be prevented by paralyzing the mutant animals. After breaking, the neuron attempts to regenerate by initiating a new growth cone; this second round of axon extension is error prone compared with initial outgrowth. Because spectrin is a major target of calpain proteolysis, it is possible that some neurodegenerative disorders may involve the cleavage of spectrin followed by the breakage of neural processes.


Asunto(s)
Axones/patología , Axones/fisiología , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Enfermedades del Sistema Nervioso/genética , Espectrina/genética , Animales , Caenorhabditis elegans/fisiología , Elasticidad , Movimiento , Mutación , Enfermedades del Sistema Nervioso/patología , Neuronas/patología , Neuronas/fisiología , Neuronas/ultraestructura , Fenotipo , Estrés Mecánico
18.
Mol Cell Neurosci ; 32(1-2): 91-101, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16682215

RESUMEN

In the mammalian peripheral nervous system, nerve insulation depends on the integrity of paranodal junctions between axons and their ensheathing glia. Ultrastructurally, these junctions are similar to the septate junctions (SJ) of invertebrates. In Drosophila, SJ are found in epithelia and in the glia that form the blood-brain barrier (BBB). Drosophila NeurexinIV and Gliotactin, two components of SJ, play an important role in nerve ensheathment and insulation. Here, we report that Drosophila Lachesin (Lac), another SJ component, is also required for a functional BBB. In the developing nervous system, Lac is expressed in a dynamic pattern by surface glia and a subset of neurons. Ultrastructural analysis of Lac mutant embryos shows poorly developed SJ in surface glia and epithelia where Lac is expressed. Mutant embryos undergo a phase of hyperactivity, with unpatterned muscle contractions, and subsequently become paralyzed and fail to hatch. We propose that this phenotype reflects a failure in BBB function.


Asunto(s)
Barrera Hematoencefálica/anomalías , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Uniones Intercelulares/genética , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/embriología , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/ultraestructura , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Embrión no Mamífero/anomalías , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipercinesia/genética , Hipercinesia/metabolismo , Hipercinesia/fisiopatología , Uniones Intercelulares/patología , Uniones Intercelulares/ultraestructura , Microscopía Electrónica de Transmisión , Contracción Muscular/genética , Músculo Esquelético/inervación , Músculo Esquelético/fisiopatología , Mutación/genética , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/metabolismo , Sistema Nervioso/ultraestructura , Neuroglía/metabolismo , Neuroglía/patología , Neuroglía/ultraestructura , Neuronas/metabolismo , Neuronas/patología , Neuronas/ultraestructura , Fenotipo
19.
Curr Biol ; 16(7): 680-6, 2006 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-16581513

RESUMEN

The vertebrate Apolipoprotein D (ApoD) is a lipocalin secreted from subsets of neurons and glia during neural development and aging . A strong correlation exists between ApoD overexpression and numerous nervous system pathologies as well as obesity, diabetes, and many forms of cancer . However, the exact relationship between the function of ApoD and the pathophysiology of these diseases is still unknown. We have generated loss-of-function Drosophila mutants for the Glial Lazarillo (GLaz) gene , a homolog of ApoD in the fruit fly, mainly expressed in subsets of adult glial cells. The absence of GLaz reduces the organism's resistance to oxidative stress and starvation and shortens male lifespan. The mutant flies exhibit a smaller body mass due to a lower amount of neutral lipids stored in the fat body. Apoptotic neural cell death increases in aged flies or upon paraquat treatment, which also impairs neural function as assessed by behavioral tests. The higher sensitivity to oxidative stress and starvation and the reduced fat storage revert to control levels when a GFP-GLaz fusion protein is expressed under the control of the GLaz natural promoter. Finally, GLaz mutants have a higher concentration of lipid peroxidation products, pointing to a lipid peroxidation protection or scavenging as the mechanism of action for this lipocalin. In agreement with Walker et al. (, in this issue of Current Biology), who analyze the effects of overexpressing GLaz, we conclude that GLaz has a protective role in stress situations and that its absence reduces lifespan and accelerates neurodegeneration.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Drosophila/fisiología , Drosophila/metabolismo , Longevidad , Glicoproteínas de Membrana/fisiología , Animales , Apoptosis , Conducta Animal , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Drosophila/citología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cuerpo Adiposo/citología , Cuerpo Adiposo/fisiología , Hemocitos/citología , Hemocitos/metabolismo , Metabolismo de los Lípidos , Peroxidación de Lípido , Longevidad/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Actividad Motora/genética , Actividad Motora/fisiología , Mutación , Neuroglía/citología , Neuroglía/metabolismo , Estrés Oxidativo , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/metabolismo , Inanición
20.
Genes Dev ; 16(12): 1568-81, 2002 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12080094

RESUMEN

We used a recently developed method to produce mutant alleles of five endogenous Drosophila genes, including the homolog of the p53 tumor suppressor. Transgenic expression of the FLP site-specific recombinase and the I-SceI endonuclease generates extrachromosomal linear DNA molecules in vivo. These molecules undergo homologous recombination with the corresponding chromosomal locus to generate targeted alterations of the host genome. The results address several questions about the general utility of this technique. We show that genes not near telomeres can be efficiently targeted; that no knowledge of the mutant phenotype is needed for targeting; and that insertional mutations and allelic substitutions can be easily produced.


Asunto(s)
Recombinación Genética , Alelos , Animales , Southern Blotting , ADN/metabolismo , ADN Nucleotidiltransferasas/metabolismo , Drosophila melanogaster , Femenino , Genes p53/genética , Genoma , Homocigoto , Masculino , Modelos Genéticos , Mutagénesis , Mutagénesis Sitio-Dirigida , Mutación , Fenotipo , Plásmidos/metabolismo , Mutación Puntual , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...