RESUMEN
Further characterization of thymic epithelial tumors (TETs) is needed. Genomic information from 102 evaluable TETs from The Cancer Genome Atlas (TCGA) dataset and from the IU-TAB-1 cell line (type AB thymoma) underwent clustering analysis to identify molecular subtypes of TETs. Six novel molecular subtypes (TH1-TH6) of TETs from the TCGA were identified, and there was no association with WHO histologic subtype. The IU-TAB-1 cell line clustered into the TH4 molecular subtype and in vitro testing of candidate therapeutics was performed. The IU-TAB-1 cell line was noted to be resistant to everolimus (mTORC1 inhibitor) and sensitive to nelfinavir (AKT1 inhibitor) across the endpoints measured. Sensitivity to nelfinavir was due to the IU-TAB-1 cell line's gain-of function (GOF) mutation in PIK3CA and amplification of genes observed from array comparative genomic hybridization (aCGH), including AURKA, ERBB2, KIT, PDGFRA and PDGFB, that are known upregulate AKT, while resistance to everolimus was primarily driven by upregulation of downstream signaling of KIT, PDGFRA and PDGFB in the presence of mTORC1 inhibition. We present a novel molecular classification of TETs independent of WHO histologic subtype, which may be used for preclinical validation studies of potential candidate therapeutics of interest for this rare disease.
RESUMEN
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is an aggressive hematological malignancy for which optimal therapeutic approaches are poorly characterized. Using computational biology modeling (CBM) in conjunction with genomic data from cell lines and individual patients, we generated disease-specific protein network maps that were used to identify unique characteristics associated with the mutational profiles of ETP-ALL compared to non-ETP-ALL (T-ALL) cases and simulated cellular responses to a digital library of FDA-approved and investigational agents. Genomics-based classification of ETP-ALL patients using CBM had a prediction sensitivity and specificity of 93% and 87%, respectively. This analysis identified key genomic and pathway characteristics that are distinct in ETP-ALL including deletion of nucleophosmin-1 (NPM1), mutations of which are used to direct therapeutic decisions in acute myeloid leukemia. Computational simulations based on mutational profiles of 62 ETP-ALL patient models identified 87 unique targeted combination therapies in 56 of the 62 patients despite actionable mutations being present in only 37% of ETP-ALL patients. Shortlisted two-drug combinations were predicted to be synergistic in 11 profiles and were validated by in vitro chemosensitivity assays. In conclusion, computational modeling was able to identify unique biomarkers and pathways for ETP-ALL, and identify new drug combinations for potential clinical testing.
Asunto(s)
Simulación por Computador , Genómica/métodos , Medicina de Precisión/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Biología Computacional/métodos , Humanos , Nucleofosmina , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: The personalization of cancer treatments implies the reconsideration of a one-size-fits-all paradigm. This move has spawned increased use of next generation sequencing to understand mutations and copy number aberrations in cancer cells. Initial personalization successes have been primarily driven by drugs targeting one patient-specific oncogene (e.g., Gleevec, Xalkori, Herceptin). Unfortunately, most cancers include a multitude of aberrations, and the overall impact on cancer signaling and metabolic networks cannot be easily nullified by a single drug. METHODS: We used a novel predictive simulation approach to create an avatar of patient cancer cells using point mutations and copy number aberration data. Simulation avatars of myeloma patients were functionally screened using various molecularly targeted drugs both individually and in combination to identify drugs that are efficacious and synergistic. Repurposing of drugs that are FDA-approved or under clinical study with validated clinical safety and pharmacokinetic data can provide a rapid translational path to the clinic. High-risk multiple myeloma patients were modeled, and the simulation predictions were assessed ex vivo using patient cells. RESULTS: Here, we present an approach to address the key challenge of interpreting patient profiling genomic signatures into actionable clinical insights to make the personalization of cancer therapy a practical reality. Through the rational design of personalized treatments, our approach also targets multiple patient-relevant pathways to address the emergence of single therapy resistance. Our predictive platform identified drug regimens for four high-risk multiple myeloma patients. The predicted regimes were found to be effective in ex vivo analyses using patient cells. CONCLUSIONS: These multiple validations confirm this approach and methodology for the use of big data to create personalized therapeutics using predictive simulation approaches.
Asunto(s)
Simulación por Computador , Mieloma Múltiple/terapia , Línea Celular Tumoral , Genómica , Humanos , Mieloma Múltiple/patología , Medicina de PrecisiónRESUMEN
Introduction Ursolic acid (UA) is a pentacyclic triterpene acid present in many plants, including apples, basil, cranberries, and rosemary. UA suppresses proliferation and induces apoptosis in a variety of tumor cells via inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). Given that single agent therapy is a major clinical obstacle to overcome in the treatment of cancer, we sought to enhance the anti-cancer efficacy of UA through rational design of combinatorial therapeutic regimens that target multiple signaling pathways critical to carcinogenesis. Methodology Using a predictive simulation-based approach that models cancer disease physiology by integrating signaling and metabolic networks, we tested the effect of UA alone and in combination with 100 other agents across cell lines from colorectal cancer, non-small cell lung cancer and multiple myeloma. Our predictive results were validated in vitro using standard molecular assays. The MTT assay and flow cytometry were used to assess cellular proliferation. Western blotting was used to monitor the combinatorial effects on apoptotic and cellular signaling pathways. Synergy was analyzed using isobologram plots. Results We predictively identified c-Jun N-terminal kinase (JNK) as a pathway that may synergistically inhibit cancer growth when targeted in combination with NFκB. UA in combination with the pan-JNK inhibitor SP600125 showed maximal reduction in viability across a panel of cancer cell lines, thereby corroborating our predictive simulation assays. In HCT116 colon carcinoma cells, the combination caused a 52% reduction in viability compared with 18% and 27% for UA and SP600125 alone, respectively. In addition, isobologram plot analysis reveals synergy with lowered doses of the drugs in combination. The combination synergistically inhibited proliferation and induced apoptosis as evidenced by an increase in the percentage sub-G1 phase cells and cleavage of caspase 3 and poly ADP ribose polymerase (PARP). Combination treatment resulted in a significant reduction in the expression of cyclin D1 and c-Myc as compared with single agent treatment. Conclusions Our findings underscore the importance of targeting NFκB and JNK signaling in combination in cancer cells. These results also highlight and validate the use of predictive simulation technology to design therapeutics for targeting novel biological mechanisms using existing or novel chemistry.