Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Front Netw Physiol ; 4: 1363791, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883205

RESUMEN

The pathogenesis of the inflammatory, chronic, and common skin disease psoriasis involves immune cells, skin cells (keratinocytes), and the cytokines they secrete. Hyperproliferation and abnormal differentiation of keratinocytes are hallmarks of the disease. The roles of cytokines such as TNFα, IL-15, IL-17, and IL-23 in psoriasis have been studied through mathematical/computational models as well as experiments. However, the role of proinflammatory cytokine IL-36 in the onset and progression of psoriasis is still elusive. To explore the role of IL-36, we construct a network embodying indirect cell-cell interactions of a few immune and skin cells mediated by IL-36 based on existing knowledge. We also develop a mathematical model for the network and perform a global sensitivity analysis. Our results suggest that the model is most sensitive to a parameter that represents the level of cytokine IL-36. In addition, a steady-state analysis of the model suggests that an increase in the level of IL-36 could lead to the hyperproliferation of keratinocytes and, thus, psoriasis. Our analysis also highlights that the plaque formation and progression of psoriasis could occur through either a gradual or a switch-like increase in the keratinocyte population. We propose that the switch-like increase would be due to a bistable behavior of the network toward either a psoriatic or healthy state and could be used as a novel treatment strategy.

2.
J Antimicrob Chemother ; 79(4): 779-783, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38334368

RESUMEN

BACKGROUND: The clinical relevance of Acinetobacter pittii is increasing, but reports of this organism causing neonatal sepsis are rare. OBJECTIVES: To understand the mechanisms of resistance and virulence of A. pittii isolated from neonatal blood belonging to a novel sequence type. MATERIALS AND METHODS: Antibiotic susceptibility, MLST, WGS, phylogenomic comparison with a global collection of carbapenemase-harbouring A. pittii were done. To study the pathogenic potential of novel A. pittii, in vitro and in vivo assays were carried out. RESULTS AND DISCUSSION: Two novel multidrug-resistant A. pittii from neonatal blood belonging to a novel sequence type 1451 (ST1451) were isolated. WGS revealed that the isolates were almost similar (147 SNP distant) and harbouring two carbapenem resistance genes blaNDM-1 with upstream ISAba125 and downstream bleMBL along with blaOXA-58 with upstream ISAba3. Other resistance genes included blaADC-25, blaOXA-533, aph(3″)-Ib, aph(3')-VIa, aph(6)-Id, aac(3)-IId, mph(E), msr(E), sul2 and tet(39), different efflux pump genes and amino acid substitutions within GyrA (Ser81Leu) and ParC (Ser84Leu; Glu88Ala) were detected among the isolates. The study genomes were closely related to four strains belonging to ST119. The isolates showed biofilm production, serum resistance, growth under iron limiting condition, surface-associated motility and adherence to host cell. Isolates induced cytokine production in the host cell and showed mice mortality. DISCUSSION AND CONCLUSIONS: This study is the first report of the presence of blaNDM-1 in A. pittii from India along with another carbapenemase blaOXA-58. Emergence of highly virulent, multidrug-resistant A. pittii with attributes similar to A. baumannii calls for surveillance to identify the novel strains and their pathogenic and resistance potential.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Acinetobacter , Animales , Ratones , Carbapenémicos/farmacología , Antibacterianos/farmacología , Virulencia , Tipificación de Secuencias Multilocus , Infecciones por Acinetobacter/epidemiología , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Acinetobacter baumannii/genética
3.
Emerg Microbes Infect ; 12(2): 2278899, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37929689

RESUMEN

Exchange of antimicrobial resistance genes via mobile genetic elements occur in the gut which can be transferred from mother to neonate during birth. This study is the first to analyse transmissible colistin resistance gene, mcr, in pregnant mothers and neonates. Samples were collected from pregnant mothers (rectal) and septicaemic neonates (rectal and blood) and analysed for the presence of mcr, its transmissibility, genome diversity, and exchange of mcr between isolates within an individual and across different individuals (not necessarily mother-baby pairs). mcr-1.1 was detected in rectal samples of pregnant mothers (n = 10, 0.9%), but not in neonates. All mcr-positive mothers gave birth to healthy neonates from whom rectal specimen were not collected. Hence, the transmission of mcr between these mother-neonate pairs could not be studied. mcr-1.1 was noted only in Escherichia coli (phylogroup A & B1), and carried few resistance and virulence genes. Isolates belonged to diverse sequence types (n = 11) with two novel STs (ST12452, ST12455). mcr-1.1 was borne on conjugative IncHI2 bracketed between ISApl1 on Tn6630, and the plasmids exhibited similarities in sequences across the study isolates. Phylogenetic comparison showed that study isolates were related to mcr-positive isolates of animal origin from Southeast Asian countries. Spread of mcr-1.1 within this study occurred either via similar mcr-positive clones or similar mcr-bearing plasmids in mothers. Though this study could not build evidence for mother-baby transmission but the presence of such genes in the maternal specimen may enhance the chances of transmission to neonates.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Animales , Recién Nacido , Femenino , Humanos , Embarazo , Antibacterianos/farmacología , Proteínas de Escherichia coli/genética , Filogenia , Madres , Colistina , Plásmidos/genética , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana
5.
Microbiol Spectr ; 11(4): e0521522, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37367488

RESUMEN

Longitudinal studies of extraintestinal pathogenic Escherichia coli (ExPEC) and epidemic clones of E. coli in association with New Delhi metallo-ß-lactamase (blaNDM) in septicaemic neonates are rare. This study captured the diversity of 80 E. coli isolates collected from septicaemic neonates in terms of antibiotic susceptibility, resistome, phylogroups, sequence types (ST), virulome, plasmids, and integron types over a decade (2009 to 2019). Most of the isolates were multidrug-resistant and, 44% of them were carbapenem-resistant, primarily due to blaNDM. NDM-1 was the sole NDM-variant present in conjugative IncFIA/FIB/FII replicons until 2013, and it was subsequently replaced by other variants, such as NDM-5/-7 found in IncX3/FII. A core genome analysis for blaNDM+ve isolates showed the heterogeneity of the isolates. Fifty percent of the infections were caused by isolates of phylogroups B2 (34%), D (11.25%), and F (4%), whereas the other half were caused by phylogroups A (25%), B1 (11.25%), and C (14%). The isolates were further distributed in approximately 20 clonal complexes (STC), including five epidemic clones (ST131, ST167, ST410, ST648, and ST405). ST167 and ST131 (subclade H30Rx) were dominant, with most of the ST167 being blaNDM+ve and blaCTX-M-15+ve. In contrast, the majority of ST131 isolates were blaNDM-ve but blaCTX-M-15+ve, and they possessed more virulence determinants than did ST167. A single nucleotide polymorphism (SNP)-based comparative genome analysis of epidemic clones ST167 and ST131 in a global context revealed that the study isolates were present in close proximity but were distant from global isolates. The presence of antibiotic-resistant epidemic clones causing sepsis calls for a modification of the recommended antibiotics with which to treat neonatal sepsis. IMPORTANCE Multidrug-resistant and virulent ExPEC causing sepsis in neonates is a challenge to neonatal health. The presence of enzymes, such as carbapenemases (blaNDM) that hydrolyze most ß-lactam antibiotic compounds, result in difficulties when treating neonates. The characterization of ExPECs collected over 10 years showed that 44% of ExPECs were carbapenem-resistant, possessing transmissible blaNDM genes. The isolates belonged to different phylogroups that are considered to be either commensals or virulent. The isolates were distributed in around 20 clonal complexes (STC), including two predominant epidemic clones (ST131 and ST167). ST167 possessed few virulence determinants but was blaNDM+ve. In contrast, ST131 harbored several virulence determinants but was blaNDM-ve. A comparison of the genomes of these epidemic clones in a global context revealed that the study isolates were present in close proximity but were distant from global isolates. The presence of epidemic clones in a vulnerable population with contrasting characteristics and the presence of resistance genes call for strict vigilance.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Patógena Extraintestinal , Sepsis , Recién Nacido , Humanos , Escherichia coli , Infecciones por Escherichia coli/epidemiología , beta-Lactamasas/genética , Antibacterianos/farmacología , Carbapenémicos , Plásmidos/genética , Factores de Virulencia/genética , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética
6.
J Glob Antimicrob Resist ; 34: 9-14, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37328061

RESUMEN

OBJECTIVES: Presence and dissemination of plasmid-mediated AmpC genes (pAmpCs) have made bacteria cephalosporin-resistant and assessment of their prevalence and diversity is essential. Coexistence of pAmpCs with New Delhi metallo-ß-lactamase (blaNDM) has facilitated their spread and NDM interferes with correct pAmpC phenotypic identification. METHODS: Assessment of pAmpCs in different species and sequence types (STs), co-transmission with blaNDM and phenotypic detection were analysed among Klebsiella pneumoniae (n = 256) and Escherichia coli (n = 92) isolated from septicaemic neonates over 13 years. RESULTS: pAmpCs were present in 9% (30/348) of strains, 5% in K. pneumoniae and 18% in E. coli. pAmpC genes (blaCMY and blaDHA) were detected, blaCMY-42 and blaDHA-1 variants being predominant. Strains were resistant to most antimicrobials tested. blaCMY and blaDHA were dominant among E. coli (14/17) and K. pneumoniae (9/13), respectively. pAmpC-bearing strains belonged to diverse STs, including epidemic K. pneumoniae ST11 and ST147. Some strains co-harboured carbapenemase genes, blaNDM (17/30) and blaOXA-48 (5/30). In 40% (12/30) of strains, pAmpC genes were transferred by conjugation, of which 8/12 exhibited co-transfer with blaNDM. pAmpCs were frequently found in replicons as follows: blaDHA-1 with IncHIB-M, blaCMY-4 with IncA/C, blaCMY-6 with IncA/C, and blaCMY-42 with IncFII. The combination disk-diffusion test correctly detected pAmpC in 77% (23/30) of pAmpC-bearing strains. However, correct detection of pAmpC was higher in strains that did not harbour blaNDM vs. those with blaNDM (85% vs. 71%). CONCLUSION: Presence of pAmpCs along with carbapenemases, linkage with multiple STs, and replicon types indicated their potential for spread. pAmpCs can go undetected in the presence of blaNDM; hence, regular surveillance is required.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Recién Nacido , Humanos , Escherichia coli/genética , Klebsiella pneumoniae/genética , Antibacterianos/farmacología , Plásmidos/genética , Infecciones por Escherichia coli/microbiología
7.
Microbiol Spectr ; : e0412122, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36752639

RESUMEN

Klebsiella pneumoniae is a major cause of neonatal sepsis. Hypervirulent Klebsiella pneumoniae (hvKP) that cause invasive infections and/or carbapenem-resistant hvKP (CR-hvKP) limit therapeutic options. Such strains causing neonatal sepsis have rarely been studied. Characterization of neonatal septicemic hvKP/CR-hvKP strains in terms of resistance and virulence was carried out. Antibiotic susceptibility, molecular characterization, evaluation of clonality, in vitro virulence, and transmissibility of carbapenemase genes were evaluated. Whole-genome sequencing (WGS) and mouse lethality assays were performed on strains harboring pLVPK-associated markers. About one-fourth (26%, 28/107) of the studied strains, leading to mortality in 39% (11/28) of the infected neonates, were categorized as hvKP. hvKP-K2 was the prevalent pathotype (64.2%, 18/28), but K54 and K57 were also identified. Most strains were clonally diverse belonging to 12 sequence types, of which ST14 was most common. Majority of hvKPs possessed virulence determinants, strong biofilm-forming, and high serum resistance ability. Nine hvKPs were carbapenem-resistant, harboring blaNDM-1/blaNDM-5 on conjugative plasmids of different replicon types. Two NDM-1-producing high-risk clones, ST11 and ST15, had pLVPK-associated markers (rmpA, rmpA2, iroBCDEN, iucABCDiutA, and peg-344), of which one co-transferred the markers along with blaNDM-1. The 2 strains revealed high inter-genomic resemblance with the other hvKP reference genomes, and were lethal in mouse model. To the best of our knowledge, this study is the first to report on the NDM-1-producing hvKP ST11-K2 and ST15-K54 strains causing fatal neonatal sepsis. The presence of pLVPK-associated markers and blaNDM-1 in high-risk clones, and the co-transmission of these genes via conjugation calls for surveillance of these strains. IMPORTANCE Klebsiella pneumoniae is a leading cause of sepsis in newborns and adults. Among the 2 major pathotypes of K. pneumoniae, classical (cKP) and hypervirulent (hvKP), hvKP causes community-acquired severe fatal invasive infections in even healthy individuals, as it possesses several virulence factors. The lack of comprehensive studies on neonatal septicemic hvKPs prompted this work. Nearly 26% diverse hvKP strains were recovered possessing several resistance and virulence determinants. The majority of them exhibited strong biofilm-forming and high serum resistance ability. Nine of these strains were also carbapenem (last-resort antibiotic)-resistant, of which 2 high-risk clones (ST11-K2 and ST15-K54) harbored markers (pLVPK) noted for their virulence, and were lethal in the mouse model. Genome-level characterization of the high-risk clones showed resemblance with the other hvKP reference genomes. The presence of transmissible carbapenem-resistant gene, blaNDM, along with pLVPK-markers calls for vigilance, as most clinical microbiology laboratories do not test for them.

8.
Int J Crit Illn Inj Sci ; 13(4): 151-158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38292395

RESUMEN

Background: Lung ultrasound (LUS) is a known imaging modality employed for monitoring patients in an intensive care unit. This study evaluates, LUS in assessing disease severity and prognosis, by correlating its score with the three commonly used clinical severity scoring systems (CSSS), namely, sequential organ failure assessment (SOFA) score, acute physiology and chronic health evaluation (APACHE) II score, and simplified acute physiology score (SAPS) II. Methods: This single-center prospective observational study included 54 adult patients of primary lung disease-induced acute respiratory distress syndrome (ARDS), on invasive ventilation. The primary objective was to correlate LUS score with SOFA score. Secondary objectives were to correlate LUS score with APACHE II and SAPS II scores. LUS score was also correlated with the estimated mortality derived from the above-mentioned scores. A subgroup analysis on COVID-19-positive cases was also carried out. All scores were calculated on the initiation of mechanical ventilation, daily for 7 days or mortality, whichever was earlier. Results: A significant positive correlation (P < 0.001) was found between LUS and all three severity scores, as well as their corresponding estimated mortality percentages, for all days of the study period, in both non-COVID-19 ARDS patients and in COVID-19 patients. The merit of all four scores in differentiating between the survivor and mortality group for the duration of study also showed significant (P < 0.05) to very significant (P < 0.001) results. Conclusion: Point-of-care LUS in conjunction with CSSS is a reliable tool for assessing the severity and progression of primary lung disease.

9.
BMC Infect Dis ; 22(1): 593, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35790903

RESUMEN

BACKGROUND: In low- and middle-income countries (LMIC) Staphylococcus aureus is regarded as one of the leading bacterial causes of neonatal sepsis, however there is limited knowledge on the species diversity and antimicrobial resistance caused by Gram-positive bacteria (GPB). METHODS: We characterised GPB isolates from neonatal blood cultures from LMICs in Africa (Ethiopia, Nigeria, Rwanda, and South Africa) and South-Asia (Bangladesh and Pakistan) between 2015-2017. We determined minimum inhibitory concentrations and performed whole genome sequencing (WGS) on Staphylococci isolates recovered and clinical data collected related to the onset of sepsis and the outcome of the neonate up to 60 days of age. RESULTS: From the isolates recovered from blood cultures, Staphylococci species were most frequently identified. Out of 100 S. aureus isolates sequenced, 18 different sequence types (ST) were found which unveiled two small epidemiological clusters caused by methicillin resistant S. aureus (MRSA) in Pakistan (ST8) and South Africa (ST5), both with high mortality (n = 6/17). One-third of S. aureus was MRSA, with methicillin resistance also detected in Staphylococcus epidermidis, Staphylococcus haemolyticus and Mammaliicoccus sciuri. Through additional WGS analysis we report a cluster of M. sciuri in Pakistan identified between July-November 2017. CONCLUSIONS: In total we identified 14 different GPB bacterial species, however Staphylococci was dominant. These findings highlight the need of a prospective genomic epidemiology study to comprehensively assess the true burden of GPB neonatal sepsis focusing specifically on mechanisms of resistance and virulence across species and in relation to neonatal outcome.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Sepsis Neonatal , Cultivo de Sangre , Países en Desarrollo , Etiopía , Humanos , Recién Nacido , Sepsis Neonatal/epidemiología , Estudios Prospectivos , Staphylococcus aureus/genética
10.
mSystems ; 7(4): e0021722, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35735748

RESUMEN

Resistance-nodulation-division-type efflux system AdeABC plays an important role in carbapenem resistance among Acinetobacter baumannii. However, a knowledge gap is observed regarding the role of its regulator AdeRS in carbapenem-resistant A. baumannii (CRAB). This study effectively combines microbiological analysis with an in-silico structural approach to understand the contribution of AdeRS among CRAB (n = 38). Additionally, molecular docking was performed for the first time to study the interaction of FDA-approved carbapenems and pump inhibitor PAßN with the open and closed structure of AdeB at the three binding sites (periplasmic, proximal, distal). It was observed that open conformation of AdeB facilitates the binding of carbapenems and PAßN at entrance and proximal sites compared to the closed conformation. PAßN was found to block carbapenem interacting residues in AdeB, establishing its role as a competitive inhibitor of AdeB substrates. Overexpression of AdeABC was detected by q-RT-PCR among 29% of CRABs, and several mutations within AdeS (GLY186VAL, SER188PHE, GLU121LYS, VAL255ILE) and AdeR (VAL120ILE, ALA136VAL) were detected by sequencing. The sequence and structure-based study of AdeRS was performed to analyze the probable effect of these mutations on regulation of the two-component system (TCS), especially, utilizing its three-dimensional structure. AdeS mutations inhibited the transfer of a phosphate group to AdeR, preventing the binding of AdeR to the intercistronic region, leading to overexpression of AdeABC. The elucidation of the role of mutations in AdeRS improves our understanding of TCS-based regulation. Identification of the key residues of AdeB interacting with carbapenems and PAßN may help in future designing of novel inhibitors. IMPORTANCE AdeABC is an important efflux pump in A. baumannii that plays a role in resistance toward different antibiotics including the "last resort" antibiotic, carbapenem. This pump is regulated by a two-component system, AdeRS. To understand the binding of carbapenems with AdeABC and pump inhibition by PAßN, we analyzed for the first time the possible atomic level interactions of carbapenems and PAßN with AdeB. In the current study, AdeRS-associated novel mutations in clinical A. baumannii are reported for the first time, and a sequence-structure based in-silico approach was used to interpret their role in AdeABC overexpression, leading to carbapenem resistance. None of the previous studies had undertaken both these aspects simultaneously. This study analyzes the open and closed conformation of AdeB, their binding with carbapenems, and key residues involved in it. This helps in visualizing the plausible atomic level causes of pump inhibition driving the discovery of novel inhibitors.


Asunto(s)
Acinetobacter baumannii , Carbapenémicos , Carbapenémicos/farmacología , Acinetobacter baumannii/genética , Simulación del Acoplamiento Molecular , Proteínas de Transporte de Membrana/genética , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Mutación
11.
Front Med (Lausanne) ; 9: 793615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402433

RESUMEN

Acinetobacter baumannii (A. baumannii) is a leading cause of nosocomial infections as this pathogen has certain attributes that facilitate the subversion of natural defenses of the human body. A. baumannii acquires antibiotic resistance determinants easily and can thrive on both biotic and abiotic surfaces. Different resistance mechanisms or determinants, both transmissible and non-transmissible, have aided in this victory over antibiotics. In addition, the propensity to form biofilms (communities of organism attached to a surface) allows the organism to persist in hospitals on various medical surfaces (cardiac valves, artificial joints, catheters, endotracheal tubes, and ventilators) and also evade antibiotics simply by shielding the bacteria and increasing its ability to acquire foreign genetic material through lateral gene transfer. The biofilm formation rate in A. baumannii is higher than in other species. Recent research has shown how A. baumannii biofilm-forming capacity exerts its effect on resistance phenotypes, development of resistome, and dissemination of resistance genes within biofilms by conjugation or transformation, thereby making biofilm a hotspot for genetic exchange. Various genes control the formation of A. baumannii biofilms and a beneficial relationship between biofilm formation and "antimicrobial resistance" (AMR) exists in the organism. This review discusses these various attributes of the organism that act independently or synergistically to cause hospital infections. Evolution of AMR in A. baumannii, resistance mechanisms including both transmissible (hydrolyzing enzymes) and non-transmissible (efflux pumps and chromosomal mutations) are presented. Intrinsic factors [biofilm-associated protein, outer membrane protein A, chaperon-usher pilus, iron uptake mechanism, poly-ß-(1, 6)-N-acetyl glucosamine, BfmS/BfmR two-component system, PER-1, quorum sensing] involved in biofilm production, extrinsic factors (surface property, growth temperature, growth medium) associated with the process, the impact of biofilms on high antimicrobial tolerance and regulation of the process, gene transfer within the biofilm, are elaborated. The infections associated with colonization of A. baumannii on medical devices are discussed. Each important device-related infection is dealt with and both adult and pediatric studies are separately mentioned. Furthermore, the strategies of preventing A. baumannii biofilms with antibiotic combinations, quorum sensing quenchers, natural products, efflux pump inhibitors, antimicrobial peptides, nanoparticles, and phage therapy are enumerated.

12.
Lancet Glob Health ; 10(5): e661-e672, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35427523

RESUMEN

BACKGROUND: Neonatal sepsis is a primary cause of neonatal mortality and is an urgent global health concern, especially within low-income and middle-income countries (LMICs), where 99% of global neonatal mortality occurs. The aims of this study were to determine the incidence and associations with neonatal sepsis and all-cause mortality in facility-born neonates in LMICs. METHODS: The Burden of Antibiotic Resistance in Neonates from Developing Societies (BARNARDS) study recruited mothers and their neonates into a prospective observational cohort study across 12 clinical sites from Bangladesh, Ethiopia, India, Pakistan, Nigeria, Rwanda, and South Africa. Data for sepsis-associated factors in the four domains of health care, maternal, birth and neonatal, and living environment were collected for all mothers and neonates enrolled. Primary outcomes were clinically suspected sepsis, laboratory-confirmed sepsis, and all-cause mortality in neonates during the first 60 days of life. Incidence proportion of livebirths for clinically suspected sepsis and laboratory-confirmed sepsis and incidence rate per 1000 neonate-days for all-cause mortality were calculated. Modified Poisson regression was used to investigate factors associated with neonatal sepsis and parametric survival models for factors associated with all-cause mortality. FINDINGS: Between Nov 12, 2015 and Feb 1, 2018, 29 483 mothers and 30 557 neonates were enrolled. The incidence of clinically suspected sepsis was 166·0 (95% CI 97·69-234·24) per 1000 livebirths, laboratory-confirmed sepsis was 46·9 (19·04-74·79) per 1000 livebirths, and all-cause mortality was 0·83 (0·37-2·00) per 1000 neonate-days. Maternal hypertension, previous maternal hospitalisation within 12 months, average or higher monthly household income, ward size (>11 beds), ward type (neonatal), living in a rural environment, preterm birth, perinatal asphyxia, and multiple births were associated with an increased risk of clinically suspected sepsis, laboratory-confirmed sepsis, and all-cause mortality. The majority (881 [72·5%] of 1215) of laboratory-confirmed sepsis cases occurred within the first 3 days of life. INTERPRETATION: Findings from this study highlight the substantial proportion of neonates who develop neonatal sepsis, and the high mortality rates among neonates with sepsis in LMICs. More efficient and effective identification of neonatal sepsis is needed to target interventions to reduce its incidence and subsequent mortality in LMICs. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
Sepsis Neonatal , Nacimiento Prematuro , Sepsis , Países en Desarrollo , Femenino , Humanos , Mortalidad Infantil , Recién Nacido , Sepsis Neonatal/epidemiología , Embarazo , Estudios Prospectivos , Sepsis/epidemiología
13.
J Antimicrob Chemother ; 77(6): 1586-1591, 2022 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-35323923

RESUMEN

BACKGROUND: Increased use of colistin in healthcare necessitates studies on the trend of colistin resistance and the underlying mechanisms. OBJECTIVES: To understand the susceptibility trend and molecular mechanisms of colistin resistance in neonatal isolates over a 12 year period. METHODS: Colistin susceptibility, mRNA expression, whole genome sequence and mutational analysis was performed. Phylogenomic comparison with a global collection of colistin-resistant Klebsiella pneumoniae strains (n = 70) was done. RESULTS: Of 319 Enterobacterales (K. pneumoniae and Escherichia coli) studied, colistin resistance was found in 9 K. pneumoniae (2.8%). The transmissible colistin resistance gene, mcr, was absent. Colistin-resistant K. pneumoniae belonged to diverse sequence types (ST14/37/101/147/716) and exhibited multiple mechanisms of colistin resistance including overexpression of the two-component systems (TCS) (phoP/Q, pmrA/B), and AcrAB-TolC pump and its regulators. Mutations in TCS, mgrB, pumps, repressors, and lipopolysaccharide-modifying genes were detected. Phylogenomic comparison revealed that this global collection of colistin-resistant K. pneumoniae was diverse, with the presence of epidemic and international clones. Mutations in mgrB and TCS noted in global strains were comparable to the study strains. Co-occurrence of carbapenem resistance (n = 61, 87%) was observed in global strains. Co-existence of dual carbapenemases (blaNDM-5 with blaOXA-48/181) in multiple lineages within different replicons was found in neonatal colistin-resistant study isolates only. CONCLUSIONS: Colistin resistance both in study and global strains is multifaceted and attributed to mutations in chromosomal genes leading to lipopolysaccharide modification or efflux of colistin through pumps. With no transmissible mcr, prevalence of colistin-resistant strains was low in this unit. Colistin-resistant strains with dual carbapenemases causing sepsis are alarming as they are practically untreatable.


Asunto(s)
Infecciones por Klebsiella , Sepsis Neonatal , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Humanos , Recién Nacido , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae , Lipopolisacáridos , Pruebas de Sensibilidad Microbiana , Filogenia , beta-Lactamasas/genética
14.
Microbiol Resour Announc ; 11(1): e0097821, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35023782

RESUMEN

We report draft whole-genome sequences of two multidrug-resistant Salmonella enterica serovar Senftenberg sequence type 14 strains resistant to ciprofloxacin, ceftriaxone, and/or azithromycin, which were isolated from neonatal stool and goat meat in Kolkata, India. The genome characteristics, as well as the antimicrobial resistance genes, plasmid types, and integrons, are presented in this report.

15.
Lancet Infect Dis ; 21(12): 1677-1688, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34384533

RESUMEN

BACKGROUND: Sepsis is a major contributor to neonatal mortality, particularly in low-income and middle-income countries (LMICs). WHO advocates ampicillin-gentamicin as first-line therapy for the management of neonatal sepsis. In the BARNARDS observational cohort study of neonatal sepsis and antimicrobial resistance in LMICs, common sepsis pathogens were characterised via whole genome sequencing (WGS) and antimicrobial resistance profiles. In this substudy of BARNARDS, we aimed to assess the use and efficacy of empirical antibiotic therapies commonly used in LMICs for neonatal sepsis. METHODS: In BARNARDS, consenting mother-neonates aged 0-60 days dyads were enrolled on delivery or neonatal presentation with suspected sepsis at 12 BARNARDS clinical sites in Bangladesh, Ethiopia, India, Pakistan, Nigeria, Rwanda, and South Africa. Stillborn babies were excluded from the study. Blood samples were collected from neonates presenting with clinical signs of sepsis, and WGS and minimum inhibitory concentrations for antibiotic treatment were determined for bacterial isolates from culture-confirmed sepsis. Neonatal outcome data were collected following enrolment until 60 days of life. Antibiotic usage and neonatal outcome data were assessed. Survival analyses were adjusted to take into account potential clinical confounding variables related to the birth and pathogen. Additionally, resistance profiles, pharmacokinetic-pharmacodynamic probability of target attainment, and frequency of resistance (ie, resistance defined by in-vitro growth of isolates when challenged by antibiotics) were assessed. Questionnaires on health structures and antibiotic costs evaluated accessibility and affordability. FINDINGS: Between Nov 12, 2015, and Feb 1, 2018, 36 285 neonates were enrolled into the main BARNARDS study, of whom 9874 had clinically diagnosed sepsis and 5749 had available antibiotic data. The four most commonly prescribed antibiotic combinations given to 4451 neonates (77·42%) of 5749 were ampicillin-gentamicin, ceftazidime-amikacin, piperacillin-tazobactam-amikacin, and amoxicillin clavulanate-amikacin. This dataset assessed 476 prescriptions for 442 neonates treated with one of these antibiotic combinations with WGS data (all BARNARDS countries were represented in this subset except India). Multiple pathogens were isolated, totalling 457 isolates. Reported mortality was lower for neonates treated with ceftazidime-amikacin than for neonates treated with ampicillin-gentamicin (hazard ratio [adjusted for clinical variables considered potential confounders to outcomes] 0·32, 95% CI 0·14-0·72; p=0·0060). Of 390 Gram-negative isolates, 379 (97·2%) were resistant to ampicillin and 274 (70·3%) were resistant to gentamicin. Susceptibility of Gram-negative isolates to at least one antibiotic in a treatment combination was noted in 111 (28·5%) to ampicillin-gentamicin; 286 (73·3%) to amoxicillin clavulanate-amikacin; 301 (77·2%) to ceftazidime-amikacin; and 312 (80·0%) to piperacillin-tazobactam-amikacin. A probability of target attainment of 80% or more was noted in 26 neonates (33·7% [SD 0·59]) of 78 with ampicillin-gentamicin; 15 (68·0% [3·84]) of 27 with amoxicillin clavulanate-amikacin; 93 (92·7% [0·24]) of 109 with ceftazidime-amikacin; and 70 (85·3% [0·47]) of 76 with piperacillin-tazobactam-amikacin. However, antibiotic and country effects could not be distinguished. Frequency of resistance was recorded most frequently with fosfomycin (in 78 isolates [68·4%] of 114), followed by colistin (55 isolates [57·3%] of 96), and gentamicin (62 isolates [53·0%] of 117). Sites in six of the seven countries (excluding South Africa) stated that the cost of antibiotics would influence treatment of neonatal sepsis. INTERPRETATION: Our data raise questions about the empirical use of combined ampicillin-gentamicin for neonatal sepsis in LMICs because of its high resistance and high rates of frequency of resistance and low probability of target attainment. Accessibility and affordability need to be considered when advocating antibiotic treatments with variance in economic health structures across LMICs. FUNDING: The Bill & Melinda Gates Foundation.


Asunto(s)
Antibacterianos/uso terapéutico , Farmacorresistencia Microbiana , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Sepsis Neonatal/tratamiento farmacológico , Sepsis Neonatal/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/economía , Estudios de Cohortes , Quimioterapia Combinada , Enterobacteriaceae/patogenicidad , Humanos , Recién Nacido , Staphylococcus aureus/patogenicidad , Virulencia
16.
Front Med (Lausanne) ; 8: 634349, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179032

RESUMEN

The convergence of a vulnerable population and a notorious pathogen is devastating, as seen in the case of sepsis occurring during the first 28 days of life (neonatal period). Sepsis leads to mortality, particularly in low-income countries (LICs) and lower-middle-income countries (LMICs). Klebsiella pneumoniae, an opportunistic pathogen is a leading cause of neonatal sepsis. The success of K. pneumoniae as a pathogen can be attributed to its multidrug-resistance and hypervirulent-pathotype. Though the WHO still recommends ampicillin and gentamicin for the treatment of neonatal sepsis, K. pneumoniae is rapidly becoming untreatable in this susceptible population. With escalating rates of cephalosporin use in health-care settings, the increasing dependency on carbapenems, a "last resort antibiotic," has led to the emergence of carbapenem-resistant K. pneumoniae (CRKP). CRKP is reported from around the world causing outbreaks of neonatal infections. Carbapenem resistance in CRKP is largely mediated by highly transmissible plasmid-encoded carbapenemase enzymes, including KPC, NDM, and OXA-48-like enzymes. Further, the emergence of a more invasive and highly pathogenic hypervirulent K. pneumoniae (hvKP) pathotype in the clinical context poses an additional challenge to the clinicians. The deadly package of resistance and virulence has already limited therapeutic options in neonates with a compromised defense system. Although there are reports of CRKP infections, a review on neonatal sepsis due to CRKP/ hvKP is scarce. Here, we discuss the current understanding of neonatal sepsis with a focus on the global impact of the CRKP, provide a perspective regarding the possible acquisition and transmission of the CRKP and/or hvKP in neonates, and present strategies to effectively identify and combat these organisms.

17.
Nat Microbiol ; 6(4): 512-523, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33782558

RESUMEN

Antimicrobial resistance in neonatal sepsis is rising, yet mechanisms of resistance that often spread between species via mobile genetic elements, ultimately limiting treatments in low- and middle-income countries (LMICs), are poorly characterized. The Burden of Antibiotic Resistance in Neonates from Developing Societies (BARNARDS) network was initiated to characterize the cause and burden of antimicrobial resistance in neonatal sepsis for seven LMICs in Africa and South Asia. A total of 36,285 neonates were enrolled in the BARNARDS study between November 2015 and December 2017, of whom 2,483 were diagnosed with culture-confirmed sepsis. Klebsiella pneumoniae (n = 258) was the main cause of neonatal sepsis, with Serratia marcescens (n = 151), Klebsiella michiganensis (n = 117), Escherichia coli (n = 75) and Enterobacter cloacae complex (n = 57) also detected. We present whole-genome sequencing, antimicrobial susceptibility and clinical data for 916 out of 1,038 neonatal sepsis isolates (97 isolates were not recovered from initial isolation at local sites). Enterobacterales (K. pneumoniae, E. coli and E. cloacae) harboured multiple cephalosporin and carbapenem resistance genes. All isolated pathogens were resistant to multiple antibiotic classes, including those used to treat neonatal sepsis. Intraspecies diversity of K. pneumoniae and E. coli indicated that multiple antibiotic-resistant lineages cause neonatal sepsis. Our results will underpin research towards better treatments for neonatal sepsis in LMICs.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas/patogenicidad , Infecciones por Bacterias Gramnegativas/microbiología , Sepsis Neonatal/microbiología , África/epidemiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Asia/epidemiología , Proteínas Bacterianas/genética , Países en Desarrollo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Variación Genética , Genoma Bacteriano/genética , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/aislamiento & purificación , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/mortalidad , Humanos , Recién Nacido , Sepsis Neonatal/tratamiento farmacológico , Sepsis Neonatal/mortalidad , Filogenia , Plásmidos/genética , beta-Lactamasas/genética
18.
Front Microbiol ; 12: 602724, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776950

RESUMEN

This study investigates susceptibility toward three fluoroquinolones (ciprofloxacin, levofloxacin, moxifloxacin), multiple fluoroquinolone-resistance mechanisms, and epidemiological relationship of neonatal septicaemic Acinetobacter baumannii. Previous studies on fluoroquinolone resistance in A. baumannii focused primarily on ciprofloxacin susceptibility and assessed a particular mechanism of resistance; a more holistic approach was taken here. Epidemiological relationship was evaluated by Multi Locus Sequence Typing. Minimum Inhibitory Concentrations of fluoroquinolones was determined with and without efflux pump inhibitors. Overexpression of efflux pumps, resistance-nodulation-cell-division (RND)-type, and multidrug and toxic compound extrusion (MATE)-type efflux pumps were evaluated by reverse transcriptase-qPCR. Mutations within regulatory proteins (AdeRS, AdeN, and AdeL) of RND-pumps were examined. Chromosomal mutations, presence of qnr and aac(6')-Ib-cr were investigated. A. baumannii were highly diverse as 24 sequence-types with seven novel STs (ST-1440/ST-1441/ST-1481/ST-1482/ST-1483/ST-1484/ST-1486) were identified among 47 A. baumannii. High resistance to ciprofloxacin (96%), levofloxacin (92%), and particularly moxifloxacin (90%) was observed, with multiple mechanisms being active. Resistance to 4th generation fluoroquinolone (moxifloxacin) in neonatal isolates is worrisome. Mutations within GyrA (S83L) and ParC (S80L) were detected in more than 90% of fluoroquinolone-resistant A. baumannii (FQRAB) spread across 10 different clonal complexes (CC1/CC2/CC10/CC25/CC32/CC126/CC149/CC216/CC218/CC513). Efflux-based FQ resistance was found in 65% of FQRAB with ≥2 different active pumps in 38% of strains. Overexpression of adeB was highest (2.2-34-folds) followed by adeJ, adeG, and abeM. Amino acid changes in the regulators (AdeRS/AdeN/AdeL) either as single or multiple substitutions substantiated the overexpression of the pumps. Diverse mutations within AdeRS were detected among different CCs whereas mutations within AdeN linked to CC10 and CC32. Chromosomal mutations and active efflux pumps were detected simultaneously among 64% of FQRAB. Presence of aac(6')-Ib-cr was also high (74% of FQRAB) but qnrS were absent. As most FQRABs had chromosomal mutations, this was considered predominant, however, isolates where pumps were also active had higher MIC values, establishing the critical role of the efflux pumps. The high variability of FQ susceptibility among FQRAB, possessing the same set of mutations in gyrA, parC, and efflux pump regulators, was also noted. This reveals the complexity of interpreting the interplay of multiple resistance mechanisms in A. baumannii.

19.
Prog Mol Biol Transl Sci ; 178: 123-174, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33685595

RESUMEN

CRISPR-Cas system, antibiotic resistance and virulence are different modes of survival for the bacteria. CRISPR-Cas is an adaptive immune system that can degrade foreign DNA, antibiotic resistance helps bacteria to evade drugs that can threaten their existence and virulence determinants are offensive tools that can facilitate the establishment of infection by pathogens. This chapter focuses on these three aspects, providing insights about the CRISPR system and resistance mechanisms in brief, followed by understanding the synergistic or antagonistic relationship of resistance and virulence determinants in connection to the CRISPR system. We have addressed the discussion of this evolving topic through specific examples and studies. Different approaches for successful detection of this unique defense system in bacteria and various applications of the CRISPR-Cas systems to show how it can be harnessed to tackle the increasing problem of antibiotic resistance have been put forth. World Health Organization has declared antibiotic resistance as a serious global problem of the 21st century. As antibiotic-resistant bacteria increase their footprint across the globe, newer tools such as the CRISPR-Cas system hold immense promise to tackle this problem.


Asunto(s)
Bacterias , Sistemas CRISPR-Cas , Antibacterianos/farmacología , Bacterias/genética , Bacterias/patogenicidad , Sistemas CRISPR-Cas/genética , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Humanos , Virulencia/efectos de los fármacos , Virulencia/genética
20.
mSphere ; 6(1)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441403

RESUMEN

Studies on the epidemiology and genomes of isolates harboring OXA-48-like genes in septicemic neonates are rare. Here, isolates producing these carbapenemases which emerged and persisted in an Indian neonatal unit were characterized in terms of their resistome, transmissibility, and genome diversity. Antibiotic susceptibility and whole-genome sequencing were carried out. The sequence types, resistome, virulome, mobile genetic elements, and transmissibility of carbapenem-resistant plasmids were evaluated. Core genome analysis of isolates was shown in a global context with other OXA-48-like carbapenemase-harboring genomes, including those from neonatal studies. Eleven OXA-48-like carbapenemase-producing Klebsiella pneumoniae (blaOXA-181, n = 7 and blaOXA-232, n = 4) isolates belonging to diverse sequence types (ST14, ST15, ST23, ST48, and ST231) were identified. blaOXA-181/OXA-232 and blaNDM-5 were found in a high-risk clone, ST14 (n = 4). blaOXA-181/OXA-232 were in small, nonconjugative ColKP3 plasmids located on truncated Tn2013, whereas blaNDM-5 was in self-transmissible, conjugative IncFII plasmids, within truncated Tn125 Conjugal transfer of blaOXA-181/OXA-232 was observed in the presence of blaNDM-5 The study strains were diverse among themselves and showed various levels of relatedness with non-neonatal strains from different parts of the world and similarity with neonatal strains from Tanzania and Ghana when compared with a representative collection of carbapenemase-positive K. pneumoniae strains. We found that blaOXA-181/OXA-232-harboring isolates from a single neonatal unit had remarkably diverse genomes, ruling out clonal spread and emphasizing the extent of plasmid spreading across different STs. This study is probably the first to report the coexistence of blaOXA-181/232 and blaNDM-5 in neonatal isolates.IMPORTANCE Neonatal sepsis is a leading cause of neonatal mortality in low- and middle-income countries (LMICs). Treatment of sepsis in this vulnerable population is dependent on antimicrobials, and resistance to these life-saving antimicrobials is worrisome. Carbapenemases, enzymes produced by bacteria, can make these antimicrobials useless. Our study describes how OXA-48-like carbapenemases in neonatal septicemic Klebsiella pneumoniae shows remarkable diversity in the genomes of the strains and relatedness with strains from other parts of world and also to some neonatal outbreak strains. It is also the first to describe such resistance due to coproduction of dual carbapenemases, (OXA)-48 and New Delhi metallo-ß-lactamase-5, in Klebsiella pneumoniae from neonatal settings. Carbapenemase genes situated on plasmids within high-risk international clones, as seen here, increase the ease and transfer of resistant genetic material. With the WHO treatment protocols not adequately poised to handle such infections, prompt attention to neonatal health care is required.


Asunto(s)
Variación Genética , Genoma Bacteriano , Infecciones por Klebsiella/transmisión , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/genética , Sepsis Neonatal/microbiología , beta-Lactamasas/genética , Antibacterianos/farmacología , Genotipo , Humanos , Recién Nacido , Infecciones por Klebsiella/sangre , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Tanzanía , Secuenciación Completa del Genoma , beta-Lactamasas/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...