Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Sci Rep ; 12(1): 16945, 2022 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-36210382

RESUMEN

Over the past decade, advances in genetic testing, particularly the advent of next-generation sequencing, have led to a paradigm shift in the diagnosis of molecular diseases and disorders. Despite our present collective ability to interrogate more than 90% of the human genome, portions of the genome have eluded us, resulting in stagnation of diagnostic yield with existing methodologies. Here we show how application of a new technology, long-read sequencing, has the potential to improve molecular diagnostic rates. Whole genome sequencing by long reads was able to cover 98% of next-generation sequencing dead zones, which are areas of the genome that are not interpretable by conventional industry-standard short-read sequencing. Through the ability of long-read sequencing to unambiguously call variants in these regions, we discovered an immunodeficiency due to a variant in IKBKG in a subject who had previously received a negative genome sequencing result. Additionally, we demonstrate the ability of long-read sequencing to detect small variants on par with short-read sequencing, its superior performance in identifying structural variants, and thirdly, its capacity to determine genomic methylation defects in native DNA. Though the latter technical abilities have been demonstrated, we demonstrate the clinical application of this technology to successfully identify multiple types of variants using a single test.


Asunto(s)
Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Secuencia de Bases , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Quinasa I-kappa B , Análisis de Secuencia de ADN/métodos
2.
Artículo en Inglés | MEDLINE | ID: mdl-30559311

RESUMEN

X-linked agammaglobulinemia (XLA, OMIM#300300) is a rare monogenic primary immunodeficiency caused by mutations in the Bruton tyrosine kinase (BTK) gene. XLA is characterized by insufficient immunoglobulin levels and susceptibility to life-threatening bacterial infections. We report on a patient that presented with ecthyma gangrenosum and septicemia. Rapid trio whole-genome sequencing (rWGS) revealed an apparently de novo hemizygous pathogenic variant (c.726dupT; p.Ile243TyrfsTer15) in the BTK gene. Metagenomic analysis of rWGS sequences that did not align to the human genome revealed 770 aligned to the Pseudomonas aeruginosa PAO1 genome. The patient was diagnosed with XLA and pseudomonal sepsis.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia/genética , Ectima/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Agammaglobulinemia Tirosina Quinasa/metabolismo , Agammaglobulinemia/diagnóstico , Bacteriemia , Ectima/diagnóstico , Gangrena/microbiología , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Humanos , Síndromes de Inmunodeficiencia , Lactante , Masculino , Infecciones por Pseudomonas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Sepsis/genética , Sepsis/metabolismo , Piel/microbiología , Secuenciación Completa del Genoma/métodos
3.
NPJ Genom Med ; 3: 6, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29449963

RESUMEN

Genetic disorders are a leading cause of morbidity and mortality in infants in neonatal and pediatric intensive care units (NICU/PICU). While genomic sequencing is useful for genetic disease diagnosis, results are usually reported too late to guide inpatient management. We performed an investigator-initiated, partially blinded, pragmatic, randomized, controlled trial to test the hypothesis that rapid whole-genome sequencing (rWGS) increased the proportion of NICU/PICU infants receiving a genetic diagnosis within 28 days. The participants were families with infants aged <4 months in a regional NICU and PICU, with illnesses of unknown etiology. The intervention was trio rWGS. Enrollment from October 2014 to June 2016, and follow-up until November 2016. Of all, 26 female infants, 37 male infants, and 2 infants of undetermined sex were randomized to receive rWGS plus standard genetic tests (n = 32, cases) or standard genetic tests alone (n = 33, controls). The study was terminated early due to loss of equipoise: 73% (24) controls received genomic sequencing as standard tests, and 15% (five) controls underwent compassionate cross-over to receive rWGS. Nevertheless, intention to treat analysis showed the rate of genetic diagnosis within 28 days of enrollment (the primary end-point) to be higher in cases (31%, 10 of 32) than controls (3%, 1 of 33; difference, 28% [95% CI, 10-46%]; p = 0.003). Among infants enrolled in the first 25 days of life, the rate of neonatal diagnosis was higher in cases (32%, 7 of 22) than controls (0%, 0 of 23; difference, 32% [95% CI, 11-53%];p = 0.004). Median age at diagnosis (25 days [range 14-90] in cases vs. 130 days [range 37-451] in controls) and median time to diagnosis (13 days [range 1-84] in cases, vs. 107 days [range 21-429] in controls) were significantly less in cases than controls (p = 0.04). In conclusion, rWGS increased the proportion of NICU/PICU infants who received timely diagnoses of genetic diseases.

4.
Artículo en Inglés | MEDLINE | ID: mdl-28864462

RESUMEN

A 9-mo-old infant was admitted with infantile spasms that improved on administration of topiramate and steroids. He also had developmental delay, esotropia, and hypsarrhythmia on interictal electroencephalogram (EEG), and normal brain magnetic resonance imaging (MRI). West syndrome is the triad of infantile spasms, interictal hypsarrhythmia, and mental retardation. Rapid trio whole-genome sequencing (WGS) revealed a novel, likely pathogenic, de novo variant in the gene encoding γ-aminobutyric acid (GABA) type A receptor, α1 polypeptide (GABRA1 c.789G>A, p.Met263Ile) in the proband. GABRA1 mutations have been associated with early infantile epileptic encephalopathy type 19 (EIEE19). We suggest that GABRA1 p.Met263Ile is associated with a distinct West syndrome phenotype.


Asunto(s)
Receptores de GABA-A/genética , Espasmos Infantiles/genética , Encéfalo/citología , Encéfalo/metabolismo , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Electroencefalografía , Genoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Lactante , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Imagen por Resonancia Magnética , Masculino , Mutación , Receptores de GABA-A/metabolismo , Espasmos Infantiles/complicaciones , Espasmos Infantiles/metabolismo , Ácido gamma-Aminobutírico/genética
5.
BMC Cancer ; 14: 944, 2014 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-25495526

RESUMEN

BACKGROUND: MYC family members are among the most frequently deregulated oncogenes in human cancers, yet direct therapeutic targeting of MYC in cancer has been challenging thus far. Synthetic lethality provides an opportunity for therapeutic intervention of MYC-driven cancers. METHODS: A pooled kinase shRNA library screen was performed and next-generation deep sequencing efforts identified that PRKDC was synthetically lethal in cells overexpressing MYC. Genes and proteins of interest were knocked down or inhibited using RNAi technology and small molecule inhibitors, respectively. Quantitative RT-PCR using TaqMan probes examined mRNA expression levels and cell viability was assessed using CellTiter-Glo (Promega). Western blotting was performed to monitor different protein levels in the presence or absence of RNAi or compound treatment. Statistical significance of differences among data sets were determined using unpaired t test (Mann-Whitney test) or ANOVA. RESULTS: Inhibition of PRKDC using RNAi (RNA interference) or small molecular inhibitors preferentially killed MYC-overexpressing human lung fibroblasts. Moreover, inducible PRKDC knockdown decreased cell viability selectively in high MYC-expressing human small cell lung cancer cell lines. At the molecular level, we found that inhibition of PRKDC downregulated MYC mRNA and protein expression in multiple cancer cell lines. In addition, we confirmed that overexpression of MYC family proteins induced DNA double-strand breaks; our results also revealed that PRKDC inhibition in these cells led to an increase in DNA damage levels. CONCLUSIONS: Our data suggest that the synthetic lethality between PRKDC and MYC may in part be due to PRKDC dependent modulation of MYC expression, as well as MYC-induced DNA damage where PRKDC plays a key role in DNA damage repair.


Asunto(s)
Proteína Quinasa Activada por ADN/genética , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Línea Celular , Línea Celular Transformada , Proliferación Celular , Supervivencia Celular/genética , Análisis por Conglomerados , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/metabolismo , Fibroblastos/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo
6.
PLoS One ; 9(8): e105561, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25133611

RESUMEN

Chemokines promote T cell migration by transmitting signals that induce T cell polarization and integrin activation and adhesion. Mst1 kinase is a key signal mediator required for both of these processes; however, its molecular mechanism remains unclear. Here, we present a mouse model in which Mst1 function is disrupted by a hypomorphic mutation. Microscopic analysis of Mst1-deficient CD4 T cells revealed a necessary role for Mst1 in controlling the localization and activity of Myosin IIa, a molecular motor that moves along actin filaments. Using affinity specific LFA-1 antibodies, we identified a requirement for Myosin IIa-dependent contraction in the precise spatial distribution of low and higher affinity LFA-1 on the membrane of migrating T cells. Mst1 deficiency or Myosin inhibition resulted in multipolar cells, difficulties in uropod detachment and mis-localization of low affinity LFA-1. Thus, Mst1 regulates Myosin IIa dynamics to organize high and low affinity LFA-1 to the anterior and posterior membrane during T cell migration.


Asunto(s)
Factor de Crecimiento de Hepatocito/inmunología , Integrinas/inmunología , Miosina Tipo IIA no Muscular/inmunología , Proteínas Proto-Oncogénicas/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Animales , Movimiento Celular , Células Cultivadas , Quimiocina CCL19/inmunología , Factor de Crecimiento de Hepatocito/genética , Antígeno-1 Asociado a Función de Linfocito/inmunología , Ratones Endogámicos C57BL , Mutación , Proteínas Proto-Oncogénicas/genética , Linfocitos T/metabolismo
7.
Mol Microbiol ; 91(6): 1106-19, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24417450

RESUMEN

Rifampicin resistance, a defining attribute of multidrug-resistant tuberculosis, is conferred by mutations in the ß subunit of RNA polymerase. Sequencing of rifampicin-resistant (RIF-R) clinical isolates of Mycobacterium tuberculosis revealed, in addition to RIF-R mutations, enrichment of potential compensatory mutations around the double-psi ß-barrel domain of the ß' subunit comprising the catalytic site and the exit tunnel for newly synthesized RNA. Sequential introduction of the resistance allele followed by the compensatory allele in isogenic Mycobacterium smegmatis showed that these mutations respectively caused and compensated a starvation enhanced growth defect by altering RNA polymerase activity. While specific combinations of resistance and compensatory alleles converged in divergent lineages, other combinations recurred among related isolates suggesting transmission of compensated RIF-R strains. These findings suggest nutrient poor growth conditions impose larger selective pressure on RIF-R organisms that results in the selection of compensatory mutations in a domain involved in catalysis and starvation control of RNA polymerase transcription.


Asunto(s)
Antituberculosos/farmacología , ARN Polimerasas Dirigidas por ADN/genética , Farmacorresistencia Bacteriana , Mutación Missense , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium smegmatis/metabolismo , Rifampin/farmacología , ARN Polimerasas Dirigidas por ADN/metabolismo , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo
8.
Proc Natl Acad Sci U S A ; 107(46): 20045-50, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21037109

RESUMEN

Plasmodium vivax causes 25-40% of malaria cases worldwide, yet research on this human malaria parasite has been neglected. Nevertheless, the recent publication of the P. vivax reference genome now allows genomics and systems biology approaches to be applied to this pathogen. We show here that whole-genome analysis of the parasite can be achieved directly from ex vivo-isolated parasites, without the need for in vitro propagation. A single isolate of P. vivax obtained from a febrile patient with clinical malaria from Peru was subjected to whole-genome sequencing (30× coverage). This analysis revealed over 18,261 single-nucleotide polymorphisms (SNPs), 6,257 of which were further validated using a tiling microarray. Within core chromosomal genes we find that one SNP per every 985 bases of coding sequence distinguishes this recent Peruvian isolate, designated IQ07, from the reference Salvador I strain obtained in 1972. This full-genome sequence of an uncultured P. vivax isolate shows that the same regions with low numbers of aligned sequencing reads are also highly variable by genomic microarray analysis. Finally, we show that the genes containing the largest ratio of nonsynonymous-to-synonymous SNPs include two AP2 transcription factors and the P. vivax multidrug resistance-associated protein (PvMRP1), an ABC transporter shown to be associated with quinoline and antifolate tolerance in Plasmodium falciparum. This analysis provides a data set for comparative analysis with important potential for identifying markers for global parasite diversity and drug resistance mapping studies.


Asunto(s)
Resistencia a Medicamentos/genética , Genes Protozoarios/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Plasmodium vivax/genética , Selección Genética , Análisis de Secuencia de ADN/métodos , Eritrocitos/parasitología , Regulación de la Expresión Génica , Humanos , Leucocitos/parasitología , Vacunas contra la Malaria/inmunología , Familia de Multigenes/genética , Mutación/genética , Perú , Plasmodium vivax/inmunología , Plasmodium vivax/aislamiento & purificación , Polimorfismo Genético , Alineación de Secuencia , Factores de Transcripción/genética
9.
Proc Natl Acad Sci U S A ; 107(8): 3552-7, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20133595

RESUMEN

Approximately 3,500 mammalian genes are predicted to be secreted or single-pass transmembrane proteins. The function of the majority of these genes is still unknown, and a number of the encoded proteins might find use as new therapeutic agents themselves or as targets for small molecule or antibody drug development. To analyze the physiological activities of the extracellular proteome, we developed a large-scale, high-throughput protein expression, purification, and screening platform. For this study, the complete human extracellular proteome was analyzed and prioritized based on genome-wide disease association studies to select 529 initial target genes. These genes were cloned into three expression vectors as native sequences and as N-terminal and C-terminal Fc fusions to create an initial collection of 806 purified secreted proteins. To determine its utility, this library was screened in an OCT4-based cellular assay to identify regulators of human embryonic stem-cell self-renewal. We found that the pigment epithelium-derived factor can promote long-term pluripotent growth of human embryonic stem cells without bFGF or TGFbeta/Activin/Nodal ligand supplementation. Our results further indicate that activation of the pigment epithelium-derived factor receptor-Erk1/2 signaling pathway by the pigment epithelium-derived factor is sufficient to maintain the self-renewal of pluripotent human embryonic stem cells. These experiments illustrate the potential for discovering novel biological functions by directly screening protein diversity in cell-based phenotypic or reporter assays.


Asunto(s)
Células Madre Embrionarias/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Proteoma/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Proteoma/genética , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Transducción de Señal
10.
Genome Biol ; 10(11): R130, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19919682

RESUMEN

Online gene annotation resources are indispensable for analysis of genomics data. However, the landscape of these online resources is highly fragmented, and scientists often visit dozens of these sites for each gene in a candidate gene list. Here, we introduce BioGPS http://biogps.gnf.org, a centralized gene portal for aggregating distributed gene annotation resources. Moreover, BioGPS embraces the principle of community intelligence, enabling any user to easily and directly contribute to the BioGPS platform.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Modelos Genéticos , Computadores , Sistemas de Administración de Bases de Datos , Bases de Datos de Proteínas , Genes , Genética , Genómica , Humanos , Internet , Modelos Biológicos , Programas Informáticos
11.
Genome Biol ; 10(2): R21, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19216790

RESUMEN

BACKGROUND: The identification of genetic changes that confer drug resistance or other phenotypic changes in pathogens can help optimize treatment strategies, support the development of new therapeutic agents, and provide information about the likely function of genes. Elucidating mechanisms of phenotypic drug resistance can also assist in identifying the mode of action of uncharacterized but potent antimalarial compounds identified in high-throughput chemical screening campaigns against Plasmodium falciparum. RESULTS: Here we show that tiling microarrays can detect de novo a large proportion of the genetic changes that differentiate one genome from another. We show that we detect most single nucleotide polymorphisms or small insertion deletion events and all known copy number variations that distinguish three laboratory isolates using readily accessible methods. We used the approach to discover mutations that occur during the selection process after transfection. We also elucidated a mechanism by which parasites acquire resistance to the antimalarial fosmidomycin, which targets the parasite isoprenoid synthesis pathway. Our microarray-based approach allowed us to attribute in vitro derived fosmidomycin resistance to a copy number variation event in the pfdxr gene, which enables the parasite to overcome fosmidomycin-mediated inhibition of isoprenoid biosynthesis. CONCLUSIONS: We show that newly emerged single nucleotide polymorphisms can readily be detected and that malaria parasites can rapidly acquire gene amplifications in response to in vitro drug pressure. The ability to define comprehensively genetic variability in P. falciparum with a single overnight hybridization creates new opportunities to study parasite evolution and improve the treatment and control of malaria.


Asunto(s)
Resistencia a Medicamentos/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Plasmodium falciparum/efectos de los fármacos , Fosfomicina/análogos & derivados , Fosfomicina/farmacología , Amplificación de Genes , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple
12.
Comb Chem High Throughput Screen ; 12(1): 2-23, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19149488

RESUMEN

Ion channels are intimately involved in virtually every physiological process of consequence in humans. Their importance is underscored by the identification of numerous "channelopathies", human diseases caused by ion channel mutations. Ion Channels have consequently been viewed as fertile ground for drug discovery and, indeed, they represent one of the largest target classes for current medicines. The future prospects of ion channels as a target class are tied to the functional characterization of the human ion channel set on a genomic scale. The focus of this review is to describe the molecular diversity and conservation of human ion channels. The human genome contains at least 232 genes that encode the pore-forming subunits of plasma membrane ion channels. Comparative genome analysis shows that most human ion channel gene families have their origins in the earliest metazoans but the human genes are largely derived from duplications that took place in the vertebrate lineage. The mouse and human ion channel gene sets are virtually identical, but differ significantly from fish channel sets. Genome comparisons highlight a number of highly conserved channel families that do not yet have specifically defined functional roles in vivo. These channel families are likely to have non-redundant functions in metazoans and represent some of the best new opportunities for channel target prospecting. Furthermore, genome-wide patterns of sequence conservation can now be used to refine strategies for the identification of gene-specific channel probes.


Asunto(s)
Evolución Biológica , Canales Iónicos/genética , Animales , Evolución Molecular , Genoma Humano , Humanos , Familia de Multigenes
13.
Mol Cell ; 33(1): 43-52, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19150426

RESUMEN

The glycine-rich G loop controls ATP binding and phosphate transfer in protein kinases. Here we show that the functions of Src family and Abl protein tyrosine kinases require an electrostatic interaction between oppositely charged amino acids within their G loops that is conserved in multiple other phylogenetically distinct protein kinases, from plants to humans. By limiting G loop flexibility, it controls ATP binding, catalysis, and inhibition by ATP-competitive compounds such as Imatinib. In WeeB mice, mutational disruption of the interaction results in expression of a Lyn protein with reduced catalytic activity, and in perturbed B cell receptor signaling. Like Lyn(-/-) mice, WeeB mice show profound defects in B cell development and function and succumb to autoimmune glomerulonephritis. This demonstrates the physiological importance of the conserved G loop salt bridge and at the same time distinguishes the in vivo requirement for the Lyn kinase activity from other potential functions of the protein.


Asunto(s)
Biocatálisis , Secuencia Conservada , Proteínas Quinasas/química , Electricidad Estática , Familia-src Quinasas/química , Familia-src Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Linfocitos B/citología , Linfocitos B/efectos de los fármacos , Linfocitos B/enzimología , Benzamidas , Biocatálisis/efectos de los fármacos , Resistencia a Antineoplásicos , Activación Enzimática/efectos de los fármacos , Proteínas de Fusión bcr-abl/metabolismo , Mesilato de Imatinib , Ratones , Ratones Mutantes , Datos de Secuencia Molecular , Mutación/genética , Filogenia , Piperazinas/farmacología , Estabilidad Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Pirimidinas/farmacología , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal/efectos de los fármacos
15.
PLoS Genet ; 4(5): e1000070, 2008 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-18464898

RESUMEN

Genome-wide gene expression profiling has been extensively used to generate biological hypotheses based on differential expression. Recently, many studies have used microarrays to measure gene expression levels across genetic mapping populations. These gene expression phenotypes have been used for genome-wide association analyses, an analysis referred to as expression QTL (eQTL) mapping. Here, eQTL analysis was performed in adipose tissue from 28 inbred strains of mice. We focused our analysis on "trans-eQTL bands", defined as instances in which the expression patterns of many genes were all associated to a common genetic locus. Genes comprising trans-eQTL bands were screened for enrichments in functional gene sets representing known biological pathways, and genes located at associated trans-eQTL band loci were considered candidate transcriptional modulators. We demonstrate that these patterns were enriched for previously characterized relationships between known upstream transcriptional regulators and their downstream target genes. Moreover, we used this strategy to identify both novel regulators and novel members of known pathways. Finally, based on a putative regulatory relationship identified in our analysis, we identified and validated a previously uncharacterized role for cyclin H in the regulation of oxidative phosphorylation. We believe that the specific molecular hypotheses generated in this study will reveal many additional pathway members and regulators, and that the analysis approaches described herein will be broadly applicable to other eQTL data sets.


Asunto(s)
Tejido Adiposo/metabolismo , Genes Reguladores , Genómica/métodos , Sitios de Carácter Cuantitativo , Adipocitos , Animales , Ciclina H , Ciclinas/genética , Ciclinas/metabolismo , Metabolismo Energético , Expresión Génica , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Transcripción Genética
16.
Genome Biol ; 9(2): R44, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18302737

RESUMEN

BACKGROUND: The mitotic spindle is a complex mechanical apparatus required for accurate segregation of sister chromosomes during mitosis. We designed a genetic screen using automated microscopy to discover factors essential for mitotic progression. Using a RNA interference library of 49,164 double-stranded RNAs targeting 23,835 human genes, we performed a loss of function screen to look for small interfering RNAs that arrest cells in metaphase. RESULTS: Here we report the identification of genes that, when suppressed, result in structural defects in the mitotic spindle leading to bent, twisted, monopolar, or multipolar spindles, and cause cell cycle arrest. We further describe a novel analysis methodology for large-scale RNA interference datasets that relies on supervised clustering of these genes based on Gene Ontology, protein families, tissue expression, and protein-protein interactions. CONCLUSION: This approach was utilized to classify functionally the identified genes in discrete mitotic processes. We confirmed the identity for a subset of these genes and examined more closely their mechanical role in spindle architecture.


Asunto(s)
Genoma Humano , Mitosis/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/fisiología , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Humanos , Interferencia de ARN
17.
PLoS One ; 3(1): e1487, 2008 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-18213395

RESUMEN

Specificity of protein ubiquitylation is conferred by E3 ubiquitin (Ub) ligases. We have annotated approximately 617 putative E3s and substrate-recognition subunits of E3 complexes encoded in the human genome. The limited knowledge of the function of members of the large E3 superfamily prompted us to generate genome-wide E3 cDNA and RNAi expression libraries designed for functional screening. An imaging-based screen using these libraries to identify E3s that regulate mitochondrial dynamics uncovered MULAN/FLJ12875, a RING finger protein whose ectopic expression and knockdown both interfered with mitochondrial trafficking and morphology. We found that MULAN is a mitochondrial protein - two transmembrane domains mediate its localization to the organelle's outer membrane. MULAN is oriented such that its E3-active, C-terminal RING finger is exposed to the cytosol, where it has access to other components of the Ub system. Both an intact RING finger and the correct subcellular localization were required for regulation of mitochondrial dynamics, suggesting that MULAN's downstream effectors are proteins that are either integral to, or associated with, mitochondria and that become modified with Ub. Interestingly, MULAN had previously been identified as an activator of NF-kappaB, thus providing a link between mitochondrial dynamics and mitochondria-to-nucleus signaling. These findings suggest the existence of a new, Ub-mediated mechanism responsible for integration of mitochondria into the cellular environment.


Asunto(s)
Genoma Humano , Mitocondrias/enzimología , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular , Humanos , Inmunohistoquímica , Ratones , Microscopía Confocal , Microscopía Inmunoelectrónica
18.
Proc Natl Acad Sci U S A ; 104(51): 20314-9, 2007 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-18077367

RESUMEN

Signal transduction pathways often use a transcriptional component to mediate adaptive cellular responses. Coactivator proteins function prominently in these pathways as the conduit to the basic transcriptional machinery. Here we present a high-throughput cell-based screening strategy, termed the "coactivator trap," to study the functional interactions of coactivators with transcription factors. We applied this strategy to the cAMP signaling pathway, which utilizes two families of coactivators, the cAMP response element binding protein (CREB) binding protein (CBP)/p300 family and the recently identified transducers of regulated CREB activity family (TORCs1-3). In addition to identifying numerous known interactions of these coactivators, this analysis identified NONO (p54(nrb)) as a TORC-interacting protein. RNA interference experiments demonstrate that NONO is necessary for cAMP-dependent activation of CREB target genes in vivo. Furthermore, TORC2 and NONO complex on cAMP-responsive promoters, and NONO acts as a bridge between the CREB/TORC complex and RNA polymerase II. These data demonstrate the utility of the coactivator trap by identification of a component of cAMP-mediated transcription.


Asunto(s)
AMP Cíclico/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Factores de Transcripción de Octámeros/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteínas de Unión al ARN/metabolismo , Línea Celular , Proteínas de Unión al ADN , Humanos , Proteínas Asociadas a Matriz Nuclear/antagonistas & inhibidores , Proteínas Asociadas a Matriz Nuclear/genética , Factores de Transcripción de Octámeros/antagonistas & inhibidores , Factores de Transcripción de Octámeros/genética , Interferencia de ARN , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Transducción de Señal , Factores de Transcripción/metabolismo , Transcripción Genética
19.
Genetics ; 176(1): 675-83, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17409088

RESUMEN

The discovery of quantitative trait loci (QTL) in model organisms has relied heavily on the ability to perform controlled breeding to generate genotypic and phenotypic diversity. Recently, we and others have demonstrated the use of an existing set of diverse inbred mice (referred to here as the mouse diversity panel, MDP) as a QTL mapping population. The use of the MDP population has many advantages relative to traditional F(2) mapping populations, including increased phenotypic diversity, a higher recombination frequency, and the ability to collect genotype and phenotype data in community databases. However, these methods are complicated by population structure inherent in the MDP and the lack of an analytical framework to assess statistical power. To address these issues, we measured gene expression levels in hypothalamus across the MDP. We then mapped these phenotypes as quantitative traits with our association algorithm, resulting in a large set of expression QTL (eQTL). We utilized these eQTL, and specifically cis-eQTL, to develop a novel nonparametric method for association analysis in structured populations like the MDP. These eQTL data confirmed that the MDP is a suitable mapping population for QTL discovery and that eQTL results can serve as a gold standard for relative measures of statistical power.


Asunto(s)
Técnicas Genéticas , Genoma , Endogamia , Dinámica Poblacional , Análisis de Varianza , Animales , Análisis por Conglomerados , Expresión Génica , Hipotálamo/metabolismo , Ratones , Sitios de Carácter Cuantitativo/genética , Estadísticas no Paramétricas
20.
Proc Natl Acad Sci U S A ; 103(40): 14819-24, 2006 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-17001007

RESUMEN

Human cells have evolved complex signaling networks to coordinate the cell cycle. A detailed understanding of the global regulation of this fundamental process requires comprehensive identification of the genes and pathways involved in the various stages of cell-cycle progression. To this end, we report a genome-wide analysis of the human cell cycle, cell size, and proliferation by targeting >95% of the protein-coding genes in the human genome using small interfering RNAs (siRNAs). Analysis of >2 million images, acquired by quantitative fluorescence microscopy, showed that depletion of 1,152 genes strongly affected cell-cycle progression. These genes clustered into eight distinct phenotypic categories based on phase of arrest, nuclear area, and nuclear morphology. Phase-specific networks were built by interrogating knowledge-based and physical interaction databases with identified genes. Genome-wide analysis of cell-cycle regulators revealed a number of kinase, phosphatase, and proteolytic proteins and also suggests that processes thought to regulate G(1)-S phase progression like receptor-mediated signaling, nutrient status, and translation also play important roles in the regulation of G(2)/M phase transition. Moreover, 15 genes that are integral to TNF/NF-kappaB signaling were found to regulate G(2)/M, a previously unanticipated role for this pathway. These analyses provide systems-level insight into both known and novel genes as well as pathways that regulate cell-cycle progression, a number of which may provide new therapeutic approaches for the treatment of cancer.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Genoma Humano/genética , Análisis por Conglomerados , Citocinesis/genética , Expresión Génica , Genes cdc , Biblioteca Genómica , Humanos , Mitosis/genética , Neoplasias/genética , Fenotipo , Mapeo de Interacción de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...