Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1374293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680489

RESUMEN

Introduction: Shigella is the etiologic agent of a bacillary dysentery known as shigellosis, which causes millions of infections and thousands of deaths worldwide each year due to Shigella's unique lifestyle within intestinal epithelial cells. Cell adhesion/invasion assays have been extensively used not only to identify targets mediating host-pathogen interaction, but also to evaluate the ability of Shigella-specific antibodies to reduce virulence. However, these assays are time-consuming and labor-intensive and fail to assess differences at the single-cell level. Objectives and methods: Here, we developed a simple, fast and high-content method named visual Adhesion/Invasion Inhibition Assay (vAIA) to measure the ability of anti-Shigellaantibodies to inhibit bacterial adhesion to and invasion of epithelial cells by using the confocal microscope Opera Phenix. Results: We showed that vAIA performed well with a pooled human serum from subjects challenged with S. sonnei and that a specific anti-IpaD monoclonal antibody effectively reduced bacterial virulence in a dose-dependent manner. Discussion: vAIA can therefore inform on the functionality of polyclonal and monoclonal responses thereby supporting the discovery of pathogenicity mechanisms and the development of candidate vaccines and immunotherapies. Lastly, this assay is very versatile and may be easily applied to other Shigella species or serotypes and to different pathogens.


Asunto(s)
Anticuerpos Antibacterianos , Adhesión Bacteriana , Disentería Bacilar , Humanos , Adhesión Bacteriana/inmunología , Disentería Bacilar/inmunología , Disentería Bacilar/microbiología , Disentería Bacilar/diagnóstico , Anticuerpos Antibacterianos/inmunología , Interacciones Huésped-Patógeno/inmunología , Shigella/inmunología , Shigella/patogenicidad , Células Epiteliales/microbiología , Células Epiteliales/inmunología , Shigella sonnei/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Células HeLa
2.
Mol Ecol ; 30(9): 2178-2196, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33639022

RESUMEN

The phylogenetic diversity of symbiotic bacteria in sucking lice suggests that lice have a complex history of symbiont acquisition, loss, and replacement throughout their evolution. These processes have resulted in the establishment of different, phylogenetically distant bacteria as obligate mutualists in different louse groups. By combining metagenomics and amplicon screening across several populations of three louse species (members of the genera Polyplax and Hoplopleura) we describe a novel louse symbiont lineage related to Neisseria and Snodgrassella, and show its independent origin in the two louse genera. While the genomes of these symbionts are highly similar, their respective distributions and status within lice microbiomes indicate that they have different functions and history. In Hoplopleura acanthopus, the Neisseriaceae-related bacterium is a dominant obligate symbiont present across several host populations. In contrast, the Polyplax microbiomes are dominated by the obligate symbiont Legionella polyplacis, with the Neisseriaceae-related bacterium co-occurring only in some samples and with much lower abundance. The results thus support the view that compared to other exclusively blood feeding insects, Anoplura possess a unique capacity to acquire symbionts from diverse groups of bacteria.


Asunto(s)
Anoplura , Microbiota , Neisseriaceae , Animales , Microbiota/genética , Neisseria , Filogenia , Simbiosis
3.
Microbiome ; 8(1): 146, 2020 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-33040738

RESUMEN

BACKGROUND: Kissing bugs (Triatominae) are blood-feeding insects best known as the vectors of Trypanosoma cruzi, the causative agent of Chagas' disease. Considering the high epidemiological relevance of these vectors, their biology and bacterial symbiosis remains surprisingly understudied. While previous investigations revealed generally low individual complexity but high among-individual variability of the triatomine microbiomes, any consistent microbiome determinants have not yet been identified across multiple Triatominae species. METHODS: To obtain a more comprehensive view of triatomine microbiomes, we investigated the host-microbiome relationship of five Triatoma species sampled from white-throated woodrat (Neotoma albigula) nests in multiple locations across the USA. We applied optimised 16S rRNA gene metabarcoding with a novel 18S rRNA gene blocking primer to a set of 170 T. cruzi-negative individuals across all six instars. RESULTS: Triatomine gut microbiome composition is strongly influenced by three principal factors: ontogeny, species identity, and the environment. The microbiomes are characterised by significant loss in bacterial diversity throughout ontogenetic development. First instars possess the highest bacterial diversity while adult microbiomes are routinely dominated by a single taxon. Primarily, the bacterial genus Dietzia dominates late-stage nymphs and adults of T. rubida, T. protracta, and T. lecticularia but is not present in the phylogenetically more distant T. gerstaeckeri and T. sanguisuga. Species-specific microbiome composition, particularly pronounced in early instars, is further modulated by locality-specific effects. In addition, pathogenic bacteria of the genus Bartonella, acquired from the vertebrate hosts, are an abundant component of Triatoma microbiomes. CONCLUSION: Our study is the first to demonstrate deterministic patterns in microbiome composition among all life stages and multiple Triatoma species. We hypothesise that triatomine microbiome assemblages are produced by species- and life stage-dependent uptake of environmental bacteria and multiple indirect transmission strategies that promote bacterial transfer between individuals. Altogether, our study highlights the complexity of Triatominae symbiosis with bacteria and warrant further investigation to understand microbiome function in these important vectors. Video abstract.


Asunto(s)
Animales Salvajes/clasificación , Animales Salvajes/microbiología , Microbiota/fisiología , Triatominae/clasificación , Triatominae/microbiología , Animales , Enfermedad de Chagas/parasitología , Femenino , Masculino , Microbiota/genética , ARN Ribosómico 16S/genética
4.
Sci Rep ; 9(1): 18618, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31819112

RESUMEN

Despite the development of several cultivation methods, the rate of discovery of microorganisms that are yet-to-be cultivated outpaces the rate of isolating and cultivating novel species in the laboratory. Furthermore, no current cultivation technique is capable of selectively isolating and cultivating specific bacterial taxa or phylogenetic groups independently of morphological or physiological properties. Here, we developed a new method to isolate living bacteria solely based on their 16S rRNA gene sequence. We showed that bacteria can survive a modified version of the standard fluorescence in situ hybridization (FISH) procedure, in which fixation is omitted and other factors, such as centrifugation and buffers, are optimized. We also demonstrated that labelled DNA probes can be introduced into living bacterial cells by means of chemical transformation and that specific hybridization occurs. This new method, which we call live-FISH, was then combined with fluorescence-activated cell sorting (FACS) to sort specific taxonomic groups of bacteria from a mock and natural bacterial communities and subsequently culture them. Live-FISH represents the first attempt to systematically optimize conditions known to affect cell viability during FISH and then to sort bacterial cells surviving the procedure. No sophisticated probe design is required, making live-FISH a straightforward method to be potentially used in combination with other single-cell techniques and for the isolation and cultivation of new microorganisms.


Asunto(s)
Bacterias/genética , Separación Celular , Hibridación Fluorescente in Situ , Técnicas Microbiológicas , ARN Ribosómico 16S/genética , Bacillus/genética , Sondas de ADN , Citometría de Flujo , Filogenia , ARN Bacteriano/genética
5.
ISME J ; 11(7): 1651-1666, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28338677

RESUMEN

Despite an increased understanding of functions in sponge microbiomes, the interactions among the symbionts and between symbionts and host are not well characterized. Here we reconstructed the metabolic interactions within the sponge Cymbastela concentrica microbiome in the context of functional features of symbiotic diatoms and the host. Three genome bins (CcPhy, CcNi and CcThau) were recovered from metagenomic data of C. concentrica, belonging to the proteobacterial family Phyllobacteriaceae, the Nitrospira genus and the thaumarchaeal order Nitrosopumilales. Gene expression was estimated by mapping C. concentrica metatranscriptomic reads. Our analyses indicated that CcPhy is heterotrophic, while CcNi and CcThau are chemolithoautotrophs. CcPhy expressed many transporters for the acquisition of dissolved organic compounds, likely available through the sponge's filtration activity and symbiotic carbon fixation. Coupled nitrification by CcThau and CcNi was reconstructed, supported by the observed close proximity of the cells in fluorescence in situ hybridization. CcPhy facultative anaerobic respiration and assimilation by diatoms may consume the resulting nitrate. Transcriptional analysis of diatom and sponge functions indicated that these organisms are likely sources of organic compounds, for example, creatine/creatinine and dissolved organic carbon, for other members of the symbiosis. Our results suggest that organic nitrogen compounds, for example, creatine, creatinine, urea and cyanate, fuel the nitrogen cycle within the sponge. This study provides an unprecedented view of the metabolic interactions within sponge-microbe symbiosis, bridging the gap between cell- and community-level knowledge.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Metagenómica , Poríferos/microbiología , Simbiosis/fisiología , Animales , Archaea/genética , Bacterias/genética , Regulación de la Expresión Génica/fisiología , Hibridación Fluorescente in Situ , Microbiota , Filogenia , Poríferos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA