Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; : e0126224, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194237

RESUMEN

Production of the amyloidogenic prion protein, PrPSc, which forms infectious protein aggregates, or prions, is a key pathogenic event in prion diseases. Functional prion-like protein aggregations, such as the mitochondrial adaptor protein MAVS and the inflammasome component protein ASC, have been identified to play a protective role in viral infections in mammalian cells. In this study, to investigate if PrPSc could play a functional role against external stimuli, we infected prion-infected cells with a neurotropic influenza A virus strain, IAV/WSN. We found that prion-infected cells were highly resistant to IAV/WSN infection. In these cells, NF-κB nuclear translocation was disturbed; therefore, mitochondrial superoxide dismutase (mtSOD) expression was suppressed, and mitochondrial reactive oxygen species (mtROS) was increased. The elevated mtROS subsequently activated NLRP3 inflammasomes, leading to the suppression of IAV/WSN-induced necroptosis. We also found that prion-infected cells accumulated a portion of PrP molecules in the cytosol, and that the N-terminal potential nuclear translocation signal of PrP impeded NF-κB nuclear translocation. These results suggest that PrPSc might play a functional role in protection against viral infections by stimulating the NLRP3 inflammasome-dependent antivirus mechanism through the cytosolic PrP-mediated disturbance of NF-κB nuclear translocation, which leads to suppression of mtSOD expression and consequently upregulation of the NLRP3 inflammasome activator mtROS. IMPORTANCE: Cytosolic PrP has been detected in prion-infected cells and suggested to be involved in the neurotoxicity of prions. Here, we also detected cytosolic PrP in prion-infected cells. We further found that the nuclear translocation of NF-κB was disturbed in prion-infected cells and that the N-terminal potential nuclear translocation signal of PrP expressed in the cytosol disturbed the nuclear translocation of NF-κB. Thus, the N-terminal nuclear translocation signal of cytosolic PrP might play a role in prion neurotoxicity. Prion-like protein aggregates in other protein misfolding disorders, including Alzheimer's disease were reported to play a protective role against various environmental stimuli. We here showed that prion-infected cells were partially resistant to IAV/WSN infection due to the cytosolic PrP-mediated disturbance of the nuclear translocation of NF-κB, which consequently activated NLRP3 inflammasomes after IAV/WSN infection. It is thus possible that prions could also play a protective role in viral infections.

2.
Lancet Reg Health West Pac ; : 100760, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37360871

RESUMEN

Background: The COVID-19 pandemic has global impacts but is relatively understudied in developing countries. Mongolia, a lower-middle-income country, instituted strict control measures in early 2020 and avoided widespread transmission until vaccines became available in February, 2021. Mongolia achieved its 60% vaccination coverage goal by July 2021. We investigated the distribution and determinants of SARS-CoV-2 seroprevalence in Mongolia over 2020 and 2021. Methods: We performed a longitudinal seroepidemiologic study aligned with WHO's Unity Studies protocols. We collected data from a panel of 5000 individuals in four rounds between October 2020 and December 2021. We selected participants through local health centres across Mongolia by age-stratified multi-stage cluster sampling. We tested serum for the presence of total antibodies against SARS-CoV-2 receptor-binding domain, and levels of anti-SARS-CoV-2 spike IgG and neutralising antibodies. We linked participant data with national mortality, COVID-19 case, and vaccination registries. We estimated population seroprevalence and vaccine uptake, as well as unvaccinated population prior-infection prevalence. Findings: At the final round in late 2021, 82% (n = 4088) of participants completed follow-up. Estimated seroprevalence increased from 1.5% (95% CI: 1.2-2.0), to 82.3% (95% CI: 79.5-84.8) between late-2020 and late-2021. At the final round an estimated 62.4% (95% CI: 60.2-64.5) of the population were vaccinated, and of the unvaccinated population 64.5% (95% CI: 59.7-69.0) had been infected. Cumulative case ascertainment in the unvaccinated was 22.8% (95% CI: 19.1%-26.9%) and the overall infection-fatality ratio was 0.100% (95% CI: 0.088-0.124). Health workers had higher odds for being COVID-19 confirmed cases at all rounds. Males (1.72 (95% CI: 1.33-2.22)) and adults aged 20 and above (12.70 (95% CI: 8.14-20.26)) had higher odds for seroconverting by mid-2021. Among the seropositive, 87.1% (95% CI: 82.3%-90.8%) had SARS-CoV-2 neutralising antibodies by late 2021. Interpretation: Our study enabled tracking of SARS-CoV-2 serological markers in the Mongolian population over one year. We found low SARS-CoV-2 seroprevalence in 2020 and early 2021, with seropositivity increasing over a 3-month interval in 2021 due to vaccine roll out and rapid infection of most of the unvaccinated population. Despite high seroprevalence in Mongolia amongst both vaccinated and unvaccinated individuals by end-2021, the SARS-CoV-2 Omicron immune escape variant caused a substantial epidemic. Funding: World Health Organization, WHO UNITY Studies initiative, with funding by the COVID-19 Solidarity Response Fund and the German Federal Ministry of Health (BMG) COVID-19 Research and development. The Ministry of Health, Mongolia partially funded this study.

3.
Lancet Reg Health West Pac ; 17: 100317, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34841381

RESUMEN

BACKGROUND: With the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in early 2020, Mongolia implemented rapid emergency measures and did not report local transmission until November 2020. We conducted a national seroprevalence survey to monitor the burden of SARS-CoV-2 in Mongolia in the months surrounding the first local transmission. METHODS: During October-December 2020, participants were randomly selected using age stratification and invited for interviews and blood samples at local primary health centres. We screened for total SARS-CoV-2 antibodies, followed by two-step quantitative SARS-CoV-2 IgG serology tests for positive samples. Weighted and test-adjusted seroprevalences were estimated. We used chi-square, Fisher's exact and other tests to identify variables associated with seropositivity. FINDINGS: A total of 5000 subjects were enrolled. We detected SARS-CoV-2 IgG antibodies in 72 samples. Crude seroprevalence of SARS-CoV-2 antibodies was 1·44% (95%CI,1·21-1·67). Population weighted and test-adjusted seroprevalences were 1·36% (95%CI,1·11-1·63) and 1·45% (95%CI,1·11-1·63), respectively. Age, sex, geographical, and occupational factors were not associated with seropositivity (p>0·05). Symptoms and signs within past 3 months and seropositivity were not associated at the time of the survey (p>0·05). INTERPRETATION: SARS-CoV-2 seroprevalence in Mongolia was low in the first year of the pandemic potentially due to strong public health measures, including border restrictions, educational facilities closure, earlier adoption of mask-wearing and others. Our findings suggest large-scale community transmission could not have occurred up to November 2020 in Mongolia. Additional serosurveys are needed to monitor the local pandemic dynamic and estimate how far from herd immunity Mongolia will be following-up with vaccination programme in 2021 and 2022. FUNDING: World Health Organisation, WHO UNITY Studies initiative, with funding by the COVID-19 Solidarity Response Fund and the German Federal Ministry of Health (BMG) COVID-19 Research and development. TRANSLATION: Cyrillic and Traditional Mongolian translation of abstract is available on appendix section.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...